Step |
Hyp |
Ref |
Expression |
1 |
|
flle |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
2 |
|
flge |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℤ ) → ( 𝑦 ≤ 𝐴 ↔ 𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
3 |
2
|
biimpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℤ ) → ( 𝑦 ≤ 𝐴 → 𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
4 |
3
|
ralrimiva |
⊢ ( 𝐴 ∈ ℝ → ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
5 |
|
flcl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
6 |
|
zmax |
⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) |
7 |
|
breq1 |
⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( 𝑥 ≤ 𝐴 ↔ ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) ) |
8 |
|
breq2 |
⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( 𝑦 ≤ 𝑥 ↔ 𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ↔ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ↔ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) ) |
11 |
7 10
|
anbi12d |
⊢ ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ↔ ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) ) ) |
12 |
11
|
riota2 |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) = ( ⌊ ‘ 𝐴 ) ) ) |
13 |
5 6 12
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) = ( ⌊ ‘ 𝐴 ) ) ) |
14 |
1 4 13
|
mpbi2and |
⊢ ( 𝐴 ∈ ℝ → ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) = ( ⌊ ‘ 𝐴 ) ) |
15 |
14
|
eqcomd |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥 ) ) ) ) |