| Step | Hyp | Ref | Expression | 
						
							| 1 |  | flle | ⊢ ( 𝐴  ∈  ℝ  →  ( ⌊ ‘ 𝐴 )  ≤  𝐴 ) | 
						
							| 2 |  | flge | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑦  ∈  ℤ )  →  ( 𝑦  ≤  𝐴  ↔  𝑦  ≤  ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 3 | 2 | biimpd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑦  ∈  ℤ )  →  ( 𝑦  ≤  𝐴  →  𝑦  ≤  ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 4 | 3 | ralrimiva | ⊢ ( 𝐴  ∈  ℝ  →  ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 5 |  | flcl | ⊢ ( 𝐴  ∈  ℝ  →  ( ⌊ ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 6 |  | zmax | ⊢ ( 𝐴  ∈  ℝ  →  ∃! 𝑥  ∈  ℤ ( 𝑥  ≤  𝐴  ∧  ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 ) ) ) | 
						
							| 7 |  | breq1 | ⊢ ( 𝑥  =  ( ⌊ ‘ 𝐴 )  →  ( 𝑥  ≤  𝐴  ↔  ( ⌊ ‘ 𝐴 )  ≤  𝐴 ) ) | 
						
							| 8 |  | breq2 | ⊢ ( 𝑥  =  ( ⌊ ‘ 𝐴 )  →  ( 𝑦  ≤  𝑥  ↔  𝑦  ≤  ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 9 | 8 | imbi2d | ⊢ ( 𝑥  =  ( ⌊ ‘ 𝐴 )  →  ( ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 )  ↔  ( 𝑦  ≤  𝐴  →  𝑦  ≤  ( ⌊ ‘ 𝐴 ) ) ) ) | 
						
							| 10 | 9 | ralbidv | ⊢ ( 𝑥  =  ( ⌊ ‘ 𝐴 )  →  ( ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 )  ↔  ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  ( ⌊ ‘ 𝐴 ) ) ) ) | 
						
							| 11 | 7 10 | anbi12d | ⊢ ( 𝑥  =  ( ⌊ ‘ 𝐴 )  →  ( ( 𝑥  ≤  𝐴  ∧  ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 ) )  ↔  ( ( ⌊ ‘ 𝐴 )  ≤  𝐴  ∧  ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  ( ⌊ ‘ 𝐴 ) ) ) ) ) | 
						
							| 12 | 11 | riota2 | ⊢ ( ( ( ⌊ ‘ 𝐴 )  ∈  ℤ  ∧  ∃! 𝑥  ∈  ℤ ( 𝑥  ≤  𝐴  ∧  ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 ) ) )  →  ( ( ( ⌊ ‘ 𝐴 )  ≤  𝐴  ∧  ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  ( ⌊ ‘ 𝐴 ) ) )  ↔  ( ℩ 𝑥  ∈  ℤ ( 𝑥  ≤  𝐴  ∧  ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 ) ) )  =  ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 13 | 5 6 12 | syl2anc | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ( ⌊ ‘ 𝐴 )  ≤  𝐴  ∧  ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  ( ⌊ ‘ 𝐴 ) ) )  ↔  ( ℩ 𝑥  ∈  ℤ ( 𝑥  ≤  𝐴  ∧  ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 ) ) )  =  ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 14 | 1 4 13 | mpbi2and | ⊢ ( 𝐴  ∈  ℝ  →  ( ℩ 𝑥  ∈  ℤ ( 𝑥  ≤  𝐴  ∧  ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 ) ) )  =  ( ⌊ ‘ 𝐴 ) ) | 
						
							| 15 | 14 | eqcomd | ⊢ ( 𝐴  ∈  ℝ  →  ( ⌊ ‘ 𝐴 )  =  ( ℩ 𝑥  ∈  ℤ ( 𝑥  ≤  𝐴  ∧  ∀ 𝑦  ∈  ℤ ( 𝑦  ≤  𝐴  →  𝑦  ≤  𝑥 ) ) ) ) |