| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssrab2 | ⊢ { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 }  ⊆  ℤ | 
						
							| 2 |  | zssre | ⊢ ℤ  ⊆  ℝ | 
						
							| 3 | 1 2 | sstri | ⊢ { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 }  ⊆  ℝ | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐴  ∈  ℝ  →  { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 }  ⊆  ℝ ) | 
						
							| 5 |  | breq1 | ⊢ ( 𝑥  =  ( ⌊ ‘ 𝐴 )  →  ( 𝑥  ≤  𝐴  ↔  ( ⌊ ‘ 𝐴 )  ≤  𝐴 ) ) | 
						
							| 6 |  | flcl | ⊢ ( 𝐴  ∈  ℝ  →  ( ⌊ ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 7 |  | flle | ⊢ ( 𝐴  ∈  ℝ  →  ( ⌊ ‘ 𝐴 )  ≤  𝐴 ) | 
						
							| 8 | 5 6 7 | elrabd | ⊢ ( 𝐴  ∈  ℝ  →  ( ⌊ ‘ 𝐴 )  ∈  { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 } ) | 
						
							| 9 | 8 | ne0d | ⊢ ( 𝐴  ∈  ℝ  →  { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 }  ≠  ∅ ) | 
						
							| 10 |  | reflcl | ⊢ ( 𝐴  ∈  ℝ  →  ( ⌊ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 11 |  | breq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ≤  𝐴  ↔  𝑧  ≤  𝐴 ) ) | 
						
							| 12 | 11 | elrab | ⊢ ( 𝑧  ∈  { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 }  ↔  ( 𝑧  ∈  ℤ  ∧  𝑧  ≤  𝐴 ) ) | 
						
							| 13 |  | flge | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑧  ∈  ℤ )  →  ( 𝑧  ≤  𝐴  ↔  𝑧  ≤  ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 14 | 13 | biimpd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑧  ∈  ℤ )  →  ( 𝑧  ≤  𝐴  →  𝑧  ≤  ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 15 | 14 | expimpd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 𝑧  ∈  ℤ  ∧  𝑧  ≤  𝐴 )  →  𝑧  ≤  ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 16 | 12 15 | biimtrid | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝑧  ∈  { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 }  →  𝑧  ≤  ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 17 | 16 | ralrimiv | ⊢ ( 𝐴  ∈  ℝ  →  ∀ 𝑧  ∈  { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 } 𝑧  ≤  ( ⌊ ‘ 𝐴 ) ) | 
						
							| 18 |  | brralrspcev | ⊢ ( ( ( ⌊ ‘ 𝐴 )  ∈  ℝ  ∧  ∀ 𝑧  ∈  { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 } 𝑧  ≤  ( ⌊ ‘ 𝐴 ) )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 } 𝑧  ≤  𝑦 ) | 
						
							| 19 | 10 17 18 | syl2anc | ⊢ ( 𝐴  ∈  ℝ  →  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 } 𝑧  ≤  𝑦 ) | 
						
							| 20 | 4 9 19 8 | suprubd | ⊢ ( 𝐴  ∈  ℝ  →  ( ⌊ ‘ 𝐴 )  ≤  sup ( { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 } ,  ℝ ,   <  ) ) | 
						
							| 21 |  | suprleub | ⊢ ( ( ( { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 }  ⊆  ℝ  ∧  { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 }  ≠  ∅  ∧  ∃ 𝑦  ∈  ℝ ∀ 𝑧  ∈  { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 } 𝑧  ≤  𝑦 )  ∧  ( ⌊ ‘ 𝐴 )  ∈  ℝ )  →  ( sup ( { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 } ,  ℝ ,   <  )  ≤  ( ⌊ ‘ 𝐴 )  ↔  ∀ 𝑧  ∈  { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 } 𝑧  ≤  ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 22 | 4 9 19 10 21 | syl31anc | ⊢ ( 𝐴  ∈  ℝ  →  ( sup ( { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 } ,  ℝ ,   <  )  ≤  ( ⌊ ‘ 𝐴 )  ↔  ∀ 𝑧  ∈  { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 } 𝑧  ≤  ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 23 | 17 22 | mpbird | ⊢ ( 𝐴  ∈  ℝ  →  sup ( { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 } ,  ℝ ,   <  )  ≤  ( ⌊ ‘ 𝐴 ) ) | 
						
							| 24 | 4 9 19 | suprcld | ⊢ ( 𝐴  ∈  ℝ  →  sup ( { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 } ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 25 | 10 24 | letri3d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ⌊ ‘ 𝐴 )  =  sup ( { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 } ,  ℝ ,   <  )  ↔  ( ( ⌊ ‘ 𝐴 )  ≤  sup ( { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 } ,  ℝ ,   <  )  ∧  sup ( { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 } ,  ℝ ,   <  )  ≤  ( ⌊ ‘ 𝐴 ) ) ) ) | 
						
							| 26 | 20 23 25 | mpbir2and | ⊢ ( 𝐴  ∈  ℝ  →  ( ⌊ ‘ 𝐴 )  =  sup ( { 𝑥  ∈  ℤ  ∣  𝑥  ≤  𝐴 } ,  ℝ ,   <  ) ) |