Metamath Proof Explorer


Theorem flword2

Description: Ordering relation for the floor function. (Contributed by Mario Carneiro, 7-Jun-2016)

Ref Expression
Assertion flword2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → ( ⌊ ‘ 𝐵 ) ∈ ( ℤ ‘ ( ⌊ ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → 𝐴 ∈ ℝ )
2 1 flcld ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → ( ⌊ ‘ 𝐴 ) ∈ ℤ )
3 simp2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → 𝐵 ∈ ℝ )
4 3 flcld ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → ( ⌊ ‘ 𝐵 ) ∈ ℤ )
5 flwordi ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → ( ⌊ ‘ 𝐴 ) ≤ ( ⌊ ‘ 𝐵 ) )
6 eluz2 ( ( ⌊ ‘ 𝐵 ) ∈ ( ℤ ‘ ( ⌊ ‘ 𝐴 ) ) ↔ ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ( ⌊ ‘ 𝐵 ) ∈ ℤ ∧ ( ⌊ ‘ 𝐴 ) ≤ ( ⌊ ‘ 𝐵 ) ) )
7 2 4 5 6 syl3anbrc ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → ( ⌊ ‘ 𝐵 ) ∈ ( ℤ ‘ ( ⌊ ‘ 𝐴 ) ) )