Description: Ordering relation for the floor function. (Contributed by Mario Carneiro, 7-Jun-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | flword2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ ) | |
2 | 1 | flcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
3 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) | |
4 | 3 | flcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐵 ) ∈ ℤ ) |
5 | flwordi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐴 ) ≤ ( ⌊ ‘ 𝐵 ) ) | |
6 | eluz2 | ⊢ ( ( ⌊ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝐴 ) ) ↔ ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ( ⌊ ‘ 𝐵 ) ∈ ℤ ∧ ( ⌊ ‘ 𝐴 ) ≤ ( ⌊ ‘ 𝐵 ) ) ) | |
7 | 2 4 5 6 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝐴 ) ) ) |