| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elfvdm | 
							⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝑋  ∈  dom  ∞Met )  | 
						
						
							| 2 | 
							
								
							 | 
							fmval | 
							⊢ ( ( 𝑋  ∈  dom  ∞Met  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  =  ( 𝑋 filGen ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl3an1 | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  =  ( 𝑋 filGen ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							eleq1d | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  ∈  ( CauFil ‘ 𝐷 )  ↔  ( 𝑋 filGen ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) )  ∈  ( CauFil ‘ 𝐷 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  𝐵  ∈  ( fBas ‘ 𝑌 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  𝐹 : 𝑌 ⟶ 𝑋 )  | 
						
						
							| 8 | 
							
								1
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  𝑋  ∈  dom  ∞Met )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  =  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							fbasrn | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋  ∧  𝑋  ∈  dom  ∞Met )  →  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  ∈  ( fBas ‘ 𝑋 ) )  | 
						
						
							| 11 | 
							
								6 7 8 10
							 | 
							syl3anc | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  ∈  ( fBas ‘ 𝑋 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fgcfil | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  ∈  ( fBas ‘ 𝑋 ) )  →  ( ( 𝑋 filGen ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) )  ∈  ( CauFil ‘ 𝐷 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑠  ∈  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) ∀ 𝑢  ∈  𝑠 ∀ 𝑣  ∈  𝑠 ( 𝑢 𝐷 𝑣 )  <  𝑥 ) )  | 
						
						
							| 13 | 
							
								5 11 12
							 | 
							syl2anc | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ( 𝑋 filGen ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) )  ∈  ( CauFil ‘ 𝐷 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑠  ∈  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) ∀ 𝑢  ∈  𝑠 ∀ 𝑣  ∈  𝑠 ( 𝑢 𝐷 𝑣 )  <  𝑥 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							imassrn | 
							⊢ ( 𝐹  “  𝑦 )  ⊆  ran  𝐹  | 
						
						
							| 15 | 
							
								
							 | 
							frn | 
							⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ran  𝐹  ⊆  𝑋 )  | 
						
						
							| 16 | 
							
								15
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ran  𝐹  ⊆  𝑋 )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							sstrid | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝐹  “  𝑦 )  ⊆  𝑋 )  | 
						
						
							| 18 | 
							
								8 17
							 | 
							ssexd | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝐹  “  𝑦 )  ∈  V )  | 
						
						
							| 19 | 
							
								18
							 | 
							ralrimivw | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ∀ 𝑦  ∈  𝐵 ( 𝐹  “  𝑦 )  ∈  V )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  =  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							raleq | 
							⊢ ( 𝑠  =  ( 𝐹  “  𝑦 )  →  ( ∀ 𝑣  ∈  𝑠 ( 𝑢 𝐷 𝑣 )  <  𝑥  ↔  ∀ 𝑣  ∈  ( 𝐹  “  𝑦 ) ( 𝑢 𝐷 𝑣 )  <  𝑥 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							raleqbi1dv | 
							⊢ ( 𝑠  =  ( 𝐹  “  𝑦 )  →  ( ∀ 𝑢  ∈  𝑠 ∀ 𝑣  ∈  𝑠 ( 𝑢 𝐷 𝑣 )  <  𝑥  ↔  ∀ 𝑢  ∈  ( 𝐹  “  𝑦 ) ∀ 𝑣  ∈  ( 𝐹  “  𝑦 ) ( 𝑢 𝐷 𝑣 )  <  𝑥 ) )  | 
						
						
							| 23 | 
							
								20 22
							 | 
							rexrnmptw | 
							⊢ ( ∀ 𝑦  ∈  𝐵 ( 𝐹  “  𝑦 )  ∈  V  →  ( ∃ 𝑠  ∈  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) ∀ 𝑢  ∈  𝑠 ∀ 𝑣  ∈  𝑠 ( 𝑢 𝐷 𝑣 )  <  𝑥  ↔  ∃ 𝑦  ∈  𝐵 ∀ 𝑢  ∈  ( 𝐹  “  𝑦 ) ∀ 𝑣  ∈  ( 𝐹  “  𝑦 ) ( 𝑢 𝐷 𝑣 )  <  𝑥 ) )  | 
						
						
							| 24 | 
							
								19 23
							 | 
							syl | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ∃ 𝑠  ∈  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) ∀ 𝑢  ∈  𝑠 ∀ 𝑣  ∈  𝑠 ( 𝑢 𝐷 𝑣 )  <  𝑥  ↔  ∃ 𝑦  ∈  𝐵 ∀ 𝑢  ∈  ( 𝐹  “  𝑦 ) ∀ 𝑣  ∈  ( 𝐹  “  𝑦 ) ( 𝑢 𝐷 𝑣 )  <  𝑥 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑦  ∈  𝐵 )  →  𝐹 : 𝑌 ⟶ 𝑋 )  | 
						
						
							| 26 | 
							
								25
							 | 
							ffnd | 
							⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑦  ∈  𝐵 )  →  𝐹  Fn  𝑌 )  | 
						
						
							| 27 | 
							
								
							 | 
							fbelss | 
							⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝑦  ∈  𝐵 )  →  𝑦  ⊆  𝑌 )  | 
						
						
							| 28 | 
							
								6 27
							 | 
							sylan | 
							⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑦  ∈  𝐵 )  →  𝑦  ⊆  𝑌 )  | 
						
						
							| 29 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑢  =  ( 𝐹 ‘ 𝑧 )  →  ( 𝑢 𝐷 𝑣 )  =  ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							breq1d | 
							⊢ ( 𝑢  =  ( 𝐹 ‘ 𝑧 )  →  ( ( 𝑢 𝐷 𝑣 )  <  𝑥  ↔  ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 )  <  𝑥 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							ralbidv | 
							⊢ ( 𝑢  =  ( 𝐹 ‘ 𝑧 )  →  ( ∀ 𝑣  ∈  ( 𝐹  “  𝑦 ) ( 𝑢 𝐷 𝑣 )  <  𝑥  ↔  ∀ 𝑣  ∈  ( 𝐹  “  𝑦 ) ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 )  <  𝑥 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							ralima | 
							⊢ ( ( 𝐹  Fn  𝑌  ∧  𝑦  ⊆  𝑌 )  →  ( ∀ 𝑢  ∈  ( 𝐹  “  𝑦 ) ∀ 𝑣  ∈  ( 𝐹  “  𝑦 ) ( 𝑢 𝐷 𝑣 )  <  𝑥  ↔  ∀ 𝑧  ∈  𝑦 ∀ 𝑣  ∈  ( 𝐹  “  𝑦 ) ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 )  <  𝑥 ) )  | 
						
						
							| 33 | 
							
								26 28 32
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑦  ∈  𝐵 )  →  ( ∀ 𝑢  ∈  ( 𝐹  “  𝑦 ) ∀ 𝑣  ∈  ( 𝐹  “  𝑦 ) ( 𝑢 𝐷 𝑣 )  <  𝑥  ↔  ∀ 𝑧  ∈  𝑦 ∀ 𝑣  ∈  ( 𝐹  “  𝑦 ) ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 )  <  𝑥 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑣  =  ( 𝐹 ‘ 𝑤 )  →  ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 )  =  ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							breq1d | 
							⊢ ( 𝑣  =  ( 𝐹 ‘ 𝑤 )  →  ( ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 )  <  𝑥  ↔  ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑥 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							ralima | 
							⊢ ( ( 𝐹  Fn  𝑌  ∧  𝑦  ⊆  𝑌 )  →  ( ∀ 𝑣  ∈  ( 𝐹  “  𝑦 ) ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 )  <  𝑥  ↔  ∀ 𝑤  ∈  𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑥 ) )  | 
						
						
							| 37 | 
							
								26 28 36
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑦  ∈  𝐵 )  →  ( ∀ 𝑣  ∈  ( 𝐹  “  𝑦 ) ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 )  <  𝑥  ↔  ∀ 𝑤  ∈  𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑥 ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							ralbidv | 
							⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑦  ∈  𝐵 )  →  ( ∀ 𝑧  ∈  𝑦 ∀ 𝑣  ∈  ( 𝐹  “  𝑦 ) ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 )  <  𝑥  ↔  ∀ 𝑧  ∈  𝑦 ∀ 𝑤  ∈  𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑥 ) )  | 
						
						
							| 39 | 
							
								33 38
							 | 
							bitrd | 
							⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑦  ∈  𝐵 )  →  ( ∀ 𝑢  ∈  ( 𝐹  “  𝑦 ) ∀ 𝑣  ∈  ( 𝐹  “  𝑦 ) ( 𝑢 𝐷 𝑣 )  <  𝑥  ↔  ∀ 𝑧  ∈  𝑦 ∀ 𝑤  ∈  𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑥 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							rexbidva | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ∃ 𝑦  ∈  𝐵 ∀ 𝑢  ∈  ( 𝐹  “  𝑦 ) ∀ 𝑣  ∈  ( 𝐹  “  𝑦 ) ( 𝑢 𝐷 𝑣 )  <  𝑥  ↔  ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑦 ∀ 𝑤  ∈  𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑥 ) )  | 
						
						
							| 41 | 
							
								24 40
							 | 
							bitrd | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ∃ 𝑠  ∈  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) ∀ 𝑢  ∈  𝑠 ∀ 𝑣  ∈  𝑠 ( 𝑢 𝐷 𝑣 )  <  𝑥  ↔  ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑦 ∀ 𝑤  ∈  𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑥 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							ralbidv | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑠  ∈  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) ∀ 𝑢  ∈  𝑠 ∀ 𝑣  ∈  𝑠 ( 𝑢 𝐷 𝑣 )  <  𝑥  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑦 ∀ 𝑤  ∈  𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑥 ) )  | 
						
						
							| 43 | 
							
								4 13 42
							 | 
							3bitrd | 
							⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  ∈  ( CauFil ‘ 𝐷 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝑦 ∀ 𝑤  ∈  𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) )  <  𝑥 ) )  |