Step |
Hyp |
Ref |
Expression |
1 |
|
elfvdm |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) |
2 |
|
fmval |
⊢ ( ( 𝑋 ∈ dom ∞Met ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
3 |
1 2
|
syl3an1 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
4 |
3
|
eleq1d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ∈ ( CauFil ‘ 𝐷 ) ) ) |
5 |
|
simp1 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
6 |
|
simp2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐵 ∈ ( fBas ‘ 𝑌 ) ) |
7 |
|
simp3 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐹 : 𝑌 ⟶ 𝑋 ) |
8 |
1
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝑋 ∈ dom ∞Met ) |
9 |
|
eqid |
⊢ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) = ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) |
10 |
9
|
fbasrn |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑋 ∈ dom ∞Met ) → ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
11 |
6 7 8 10
|
syl3anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
12 |
|
fgcfil |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ∈ ( CauFil ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑠 ∈ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
13 |
5 11 12
|
syl2anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ∈ ( CauFil ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑠 ∈ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
14 |
|
imassrn |
⊢ ( 𝐹 “ 𝑦 ) ⊆ ran 𝐹 |
15 |
|
frn |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ran 𝐹 ⊆ 𝑋 ) |
16 |
15
|
3ad2ant3 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ran 𝐹 ⊆ 𝑋 ) |
17 |
14 16
|
sstrid |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐹 “ 𝑦 ) ⊆ 𝑋 ) |
18 |
8 17
|
ssexd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐹 “ 𝑦 ) ∈ V ) |
19 |
18
|
ralrimivw |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ∀ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ∈ V ) |
20 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) |
21 |
|
raleq |
⊢ ( 𝑠 = ( 𝐹 “ 𝑦 ) → ( ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
22 |
21
|
raleqbi1dv |
⊢ ( 𝑠 = ( 𝐹 “ 𝑦 ) → ( ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑢 ∈ ( 𝐹 “ 𝑦 ) ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
23 |
20 22
|
rexrnmptw |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝐹 “ 𝑦 ) ∈ V → ( ∃ 𝑠 ∈ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 ∀ 𝑢 ∈ ( 𝐹 “ 𝑦 ) ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
24 |
19 23
|
syl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∃ 𝑠 ∈ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 ∀ 𝑢 ∈ ( 𝐹 “ 𝑦 ) ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
25 |
|
simpl3 |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐹 : 𝑌 ⟶ 𝑋 ) |
26 |
25
|
ffnd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 ∈ 𝐵 ) → 𝐹 Fn 𝑌 ) |
27 |
|
fbelss |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ⊆ 𝑌 ) |
28 |
6 27
|
sylan |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ⊆ 𝑌 ) |
29 |
|
oveq1 |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑧 ) → ( 𝑢 𝐷 𝑣 ) = ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) ) |
30 |
29
|
breq1d |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) < 𝑥 ) ) |
31 |
30
|
ralbidv |
⊢ ( 𝑢 = ( 𝐹 ‘ 𝑧 ) → ( ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) < 𝑥 ) ) |
32 |
31
|
ralima |
⊢ ( ( 𝐹 Fn 𝑌 ∧ 𝑦 ⊆ 𝑌 ) → ( ∀ 𝑢 ∈ ( 𝐹 “ 𝑦 ) ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑦 ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) < 𝑥 ) ) |
33 |
26 28 32
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑢 ∈ ( 𝐹 “ 𝑦 ) ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑦 ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) < 𝑥 ) ) |
34 |
|
oveq2 |
⊢ ( 𝑣 = ( 𝐹 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) = ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) ) |
35 |
34
|
breq1d |
⊢ ( 𝑣 = ( 𝐹 ‘ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑥 ) ) |
36 |
35
|
ralima |
⊢ ( ( 𝐹 Fn 𝑌 ∧ 𝑦 ⊆ 𝑌 ) → ( ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑤 ∈ 𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑥 ) ) |
37 |
26 28 36
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑤 ∈ 𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑥 ) ) |
38 |
37
|
ralbidv |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( ( 𝐹 ‘ 𝑧 ) 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑥 ) ) |
39 |
33 38
|
bitrd |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑢 ∈ ( 𝐹 “ 𝑦 ) ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑥 ) ) |
40 |
39
|
rexbidva |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∃ 𝑦 ∈ 𝐵 ∀ 𝑢 ∈ ( 𝐹 “ 𝑦 ) ∀ 𝑣 ∈ ( 𝐹 “ 𝑦 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑥 ) ) |
41 |
24 40
|
bitrd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∃ 𝑠 ∈ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑥 ) ) |
42 |
41
|
ralbidv |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑠 ∈ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑥 ) ) |
43 |
4 13 42
|
3bitrd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ∈ ( CauFil ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( ( 𝐹 ‘ 𝑧 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑥 ) ) |