Step |
Hyp |
Ref |
Expression |
1 |
|
ovex |
⊢ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ∈ V |
2 |
|
eqid |
⊢ ( 𝑏 ∈ ( fBas ‘ 𝑌 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) = ( 𝑏 ∈ ( fBas ‘ 𝑌 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
3 |
1 2
|
fnmpti |
⊢ ( 𝑏 ∈ ( fBas ‘ 𝑌 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) Fn ( fBas ‘ 𝑌 ) |
4 |
|
df-fm |
⊢ FilMap = ( 𝑥 ∈ V , 𝑓 ∈ V ↦ ( 𝑏 ∈ ( fBas ‘ dom 𝑓 ) ↦ ( 𝑥 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝑓 “ 𝑦 ) ) ) ) ) |
5 |
4
|
a1i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → FilMap = ( 𝑥 ∈ V , 𝑓 ∈ V ↦ ( 𝑏 ∈ ( fBas ‘ dom 𝑓 ) ↦ ( 𝑥 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝑓 “ 𝑦 ) ) ) ) ) ) |
6 |
|
dmeq |
⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) |
7 |
6
|
adantl |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑓 = 𝐹 ) → dom 𝑓 = dom 𝐹 ) |
8 |
|
fdm |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → dom 𝐹 = 𝑌 ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → dom 𝐹 = 𝑌 ) |
10 |
7 9
|
sylan9eqr |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑥 = 𝑋 ∧ 𝑓 = 𝐹 ) ) → dom 𝑓 = 𝑌 ) |
11 |
10
|
fveq2d |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑥 = 𝑋 ∧ 𝑓 = 𝐹 ) ) → ( fBas ‘ dom 𝑓 ) = ( fBas ‘ 𝑌 ) ) |
12 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
13 |
|
imaeq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 “ 𝑦 ) = ( 𝐹 “ 𝑦 ) ) |
14 |
13
|
mpteq2dv |
⊢ ( 𝑓 = 𝐹 → ( 𝑦 ∈ 𝑏 ↦ ( 𝑓 “ 𝑦 ) ) = ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) |
15 |
14
|
rneqd |
⊢ ( 𝑓 = 𝐹 → ran ( 𝑦 ∈ 𝑏 ↦ ( 𝑓 “ 𝑦 ) ) = ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) |
16 |
12 15
|
oveqan12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑓 = 𝐹 ) → ( 𝑥 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝑓 “ 𝑦 ) ) ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑥 = 𝑋 ∧ 𝑓 = 𝐹 ) ) → ( 𝑥 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝑓 “ 𝑦 ) ) ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
18 |
11 17
|
mpteq12dv |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑥 = 𝑋 ∧ 𝑓 = 𝐹 ) ) → ( 𝑏 ∈ ( fBas ‘ dom 𝑓 ) ↦ ( 𝑥 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝑓 “ 𝑦 ) ) ) ) = ( 𝑏 ∈ ( fBas ‘ 𝑌 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) ) |
19 |
|
elex |
⊢ ( 𝑋 ∈ 𝐴 → 𝑋 ∈ V ) |
20 |
19
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝑋 ∈ V ) |
21 |
|
fex2 |
⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → 𝐹 ∈ V ) |
22 |
21
|
3com13 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐹 ∈ V ) |
23 |
|
fvex |
⊢ ( fBas ‘ 𝑌 ) ∈ V |
24 |
23
|
mptex |
⊢ ( 𝑏 ∈ ( fBas ‘ 𝑌 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) ∈ V |
25 |
24
|
a1i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑏 ∈ ( fBas ‘ 𝑌 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) ∈ V ) |
26 |
5 18 20 22 25
|
ovmpod |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑋 FilMap 𝐹 ) = ( 𝑏 ∈ ( fBas ‘ 𝑌 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) ) |
27 |
26
|
fneq1d |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) Fn ( fBas ‘ 𝑌 ) ↔ ( 𝑏 ∈ ( fBas ‘ 𝑌 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) Fn ( fBas ‘ 𝑌 ) ) ) |
28 |
3 27
|
mpbiri |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑋 FilMap 𝐹 ) Fn ( fBas ‘ 𝑌 ) ) |
29 |
|
simpl1 |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → 𝑋 ∈ 𝐴 ) |
30 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → 𝑏 ∈ ( fBas ‘ 𝑌 ) ) |
31 |
|
simpl3 |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → 𝐹 : 𝑌 ⟶ 𝑋 ) |
32 |
|
fmfil |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) ∈ ( Fil ‘ 𝑋 ) ) |
33 |
29 30 31 32
|
syl3anc |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑏 ∈ ( fBas ‘ 𝑌 ) ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) ∈ ( Fil ‘ 𝑋 ) ) |
34 |
33
|
ralrimiva |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ∀ 𝑏 ∈ ( fBas ‘ 𝑌 ) ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) ∈ ( Fil ‘ 𝑋 ) ) |
35 |
|
ffnfv |
⊢ ( ( 𝑋 FilMap 𝐹 ) : ( fBas ‘ 𝑌 ) ⟶ ( Fil ‘ 𝑋 ) ↔ ( ( 𝑋 FilMap 𝐹 ) Fn ( fBas ‘ 𝑌 ) ∧ ∀ 𝑏 ∈ ( fBas ‘ 𝑌 ) ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑏 ) ∈ ( Fil ‘ 𝑋 ) ) ) |
36 |
28 34 35
|
sylanbrc |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑋 FilMap 𝐹 ) : ( fBas ‘ 𝑌 ) ⟶ ( Fil ‘ 𝑋 ) ) |