Step |
Hyp |
Ref |
Expression |
1 |
|
fmval |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
2 |
|
eqid |
⊢ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) = ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) |
3 |
2
|
fbasrn |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑋 ∈ 𝐴 ) → ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
4 |
3
|
3comr |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
5 |
|
fgcl |
⊢ ( ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ∈ ( Fil ‘ 𝑋 ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ∈ ( Fil ‘ 𝑋 ) ) |
7 |
1 6
|
eqeltrd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ∈ ( Fil ‘ 𝑋 ) ) |