| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmval | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  =  ( 𝑋 filGen ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) ) ) | 
						
							| 2 |  | eqid | ⊢ ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  =  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) | 
						
							| 3 | 2 | fbasrn | ⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋  ∧  𝑋  ∈  𝐴 )  →  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 4 | 3 | 3comr | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 5 |  | fgcl | ⊢ ( ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  ∈  ( fBas ‘ 𝑋 )  →  ( 𝑋 filGen ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) )  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝑋 filGen ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) )  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 7 | 1 6 | eqeltrd | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  ∈  ( Fil ‘ 𝑋 ) ) |