| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmfnfm.b | ⊢ ( 𝜑  →  𝐵  ∈  ( fBas ‘ 𝑌 ) ) | 
						
							| 2 |  | fmfnfm.l | ⊢ ( 𝜑  →  𝐿  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 3 |  | fmfnfm.f | ⊢ ( 𝜑  →  𝐹 : 𝑌 ⟶ 𝑋 ) | 
						
							| 4 |  | fmfnfm.fm | ⊢ ( 𝜑  →  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  ⊆  𝐿 ) | 
						
							| 5 |  | fbsspw | ⊢ ( 𝐵  ∈  ( fBas ‘ 𝑌 )  →  𝐵  ⊆  𝒫  𝑌 ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝜑  →  𝐵  ⊆  𝒫  𝑌 ) | 
						
							| 7 |  | elfvdm | ⊢ ( 𝐵  ∈  ( fBas ‘ 𝑌 )  →  𝑌  ∈  dom  fBas ) | 
						
							| 8 | 1 7 | syl | ⊢ ( 𝜑  →  𝑌  ∈  dom  fBas ) | 
						
							| 9 |  | ffn | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  𝐹  Fn  𝑌 ) | 
						
							| 10 |  | dffn4 | ⊢ ( 𝐹  Fn  𝑌  ↔  𝐹 : 𝑌 –onto→ ran  𝐹 ) | 
						
							| 11 | 9 10 | sylib | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  𝐹 : 𝑌 –onto→ ran  𝐹 ) | 
						
							| 12 |  | foima | ⊢ ( 𝐹 : 𝑌 –onto→ ran  𝐹  →  ( 𝐹  “  𝑌 )  =  ran  𝐹 ) | 
						
							| 13 | 3 11 12 | 3syl | ⊢ ( 𝜑  →  ( 𝐹  “  𝑌 )  =  ran  𝐹 ) | 
						
							| 14 |  | filtop | ⊢ ( 𝐿  ∈  ( Fil ‘ 𝑋 )  →  𝑋  ∈  𝐿 ) | 
						
							| 15 | 2 14 | syl | ⊢ ( 𝜑  →  𝑋  ∈  𝐿 ) | 
						
							| 16 |  | fgcl | ⊢ ( 𝐵  ∈  ( fBas ‘ 𝑌 )  →  ( 𝑌 filGen 𝐵 )  ∈  ( Fil ‘ 𝑌 ) ) | 
						
							| 17 |  | filtop | ⊢ ( ( 𝑌 filGen 𝐵 )  ∈  ( Fil ‘ 𝑌 )  →  𝑌  ∈  ( 𝑌 filGen 𝐵 ) ) | 
						
							| 18 | 1 16 17 | 3syl | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑌 filGen 𝐵 ) ) | 
						
							| 19 |  | eqid | ⊢ ( 𝑌 filGen 𝐵 )  =  ( 𝑌 filGen 𝐵 ) | 
						
							| 20 | 19 | imaelfm | ⊢ ( ( ( 𝑋  ∈  𝐿  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑌  ∈  ( 𝑌 filGen 𝐵 ) )  →  ( 𝐹  “  𝑌 )  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 ) ) | 
						
							| 21 | 15 1 3 18 20 | syl31anc | ⊢ ( 𝜑  →  ( 𝐹  “  𝑌 )  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 ) ) | 
						
							| 22 | 13 21 | eqeltrrd | ⊢ ( 𝜑  →  ran  𝐹  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 ) ) | 
						
							| 23 | 4 22 | sseldd | ⊢ ( 𝜑  →  ran  𝐹  ∈  𝐿 ) | 
						
							| 24 |  | rnelfmlem | ⊢ ( ( ( 𝑌  ∈  dom  fBas  ∧  𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ran  𝐹  ∈  𝐿 )  →  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∈  ( fBas ‘ 𝑌 ) ) | 
						
							| 25 | 8 2 3 23 24 | syl31anc | ⊢ ( 𝜑  →  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∈  ( fBas ‘ 𝑌 ) ) | 
						
							| 26 |  | fbsspw | ⊢ ( ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∈  ( fBas ‘ 𝑌 )  →  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝒫  𝑌 ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝜑  →  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝒫  𝑌 ) | 
						
							| 28 | 6 27 | unssd | ⊢ ( 𝜑  →  ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ⊆  𝒫  𝑌 ) | 
						
							| 29 |  | ssun1 | ⊢ 𝐵  ⊆  ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 30 |  | fbasne0 | ⊢ ( 𝐵  ∈  ( fBas ‘ 𝑌 )  →  𝐵  ≠  ∅ ) | 
						
							| 31 | 1 30 | syl | ⊢ ( 𝜑  →  𝐵  ≠  ∅ ) | 
						
							| 32 |  | ssn0 | ⊢ ( ( 𝐵  ⊆  ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ∧  𝐵  ≠  ∅ )  →  ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ≠  ∅ ) | 
						
							| 33 | 29 31 32 | sylancr | ⊢ ( 𝜑  →  ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ≠  ∅ ) | 
						
							| 34 |  | eqid | ⊢ ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  =  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 35 | 34 | elrnmpt | ⊢ ( 𝑡  ∈  V  →  ( 𝑡  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 𝑡  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 36 | 35 | elv | ⊢ ( 𝑡  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 𝑡  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 37 |  | 0nelfil | ⊢ ( 𝐿  ∈  ( Fil ‘ 𝑋 )  →  ¬  ∅  ∈  𝐿 ) | 
						
							| 38 | 2 37 | syl | ⊢ ( 𝜑  →  ¬  ∅  ∈  𝐿 ) | 
						
							| 39 | 38 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  →  ¬  ∅  ∈  𝐿 ) | 
						
							| 40 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  𝐿  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 41 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  ⊆  𝐿 ) | 
						
							| 42 | 15 1 3 | 3jca | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝐿  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  ( 𝑋  ∈  𝐿  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 ) ) | 
						
							| 44 |  | ssfg | ⊢ ( 𝐵  ∈  ( fBas ‘ 𝑌 )  →  𝐵  ⊆  ( 𝑌 filGen 𝐵 ) ) | 
						
							| 45 | 1 44 | syl | ⊢ ( 𝜑  →  𝐵  ⊆  ( 𝑌 filGen 𝐵 ) ) | 
						
							| 46 | 45 | sselda | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  𝑠  ∈  ( 𝑌 filGen 𝐵 ) ) | 
						
							| 47 | 19 | imaelfm | ⊢ ( ( ( 𝑋  ∈  𝐿  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑠  ∈  ( 𝑌 filGen 𝐵 ) )  →  ( 𝐹  “  𝑠 )  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 ) ) | 
						
							| 48 | 43 46 47 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  ( 𝐹  “  𝑠 )  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 ) ) | 
						
							| 49 | 41 48 | sseldd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  ( 𝐹  “  𝑠 )  ∈  𝐿 ) | 
						
							| 50 | 40 49 | jca | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐹  “  𝑠 )  ∈  𝐿 ) ) | 
						
							| 51 |  | filin | ⊢ ( ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐹  “  𝑠 )  ∈  𝐿  ∧  𝑥  ∈  𝐿 )  →  ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  ∈  𝐿 ) | 
						
							| 52 | 51 | 3expa | ⊢ ( ( ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐹  “  𝑠 )  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  →  ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  ∈  𝐿 ) | 
						
							| 53 | 50 52 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  →  ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  ∈  𝐿 ) | 
						
							| 54 |  | eleq1 | ⊢ ( ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  =  ∅  →  ( ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  ∈  𝐿  ↔  ∅  ∈  𝐿 ) ) | 
						
							| 55 | 53 54 | syl5ibcom | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  →  ( ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  =  ∅  →  ∅  ∈  𝐿 ) ) | 
						
							| 56 | 39 55 | mtod | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  →  ¬  ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  =  ∅ ) | 
						
							| 57 |  | neq0 | ⊢ ( ¬  ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  =  ∅  ↔  ∃ 𝑡 𝑡  ∈  ( ( 𝐹  “  𝑠 )  ∩  𝑥 ) ) | 
						
							| 58 |  | elin | ⊢ ( 𝑡  ∈  ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  ↔  ( 𝑡  ∈  ( 𝐹  “  𝑠 )  ∧  𝑡  ∈  𝑥 ) ) | 
						
							| 59 |  | ffun | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  Fun  𝐹 ) | 
						
							| 60 |  | fvelima | ⊢ ( ( Fun  𝐹  ∧  𝑡  ∈  ( 𝐹  “  𝑠 ) )  →  ∃ 𝑦  ∈  𝑠 ( 𝐹 ‘ 𝑦 )  =  𝑡 ) | 
						
							| 61 | 60 | ex | ⊢ ( Fun  𝐹  →  ( 𝑡  ∈  ( 𝐹  “  𝑠 )  →  ∃ 𝑦  ∈  𝑠 ( 𝐹 ‘ 𝑦 )  =  𝑡 ) ) | 
						
							| 62 | 3 59 61 | 3syl | ⊢ ( 𝜑  →  ( 𝑡  ∈  ( 𝐹  “  𝑠 )  →  ∃ 𝑦  ∈  𝑠 ( 𝐹 ‘ 𝑦 )  =  𝑡 ) ) | 
						
							| 63 | 62 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  →  ( 𝑡  ∈  ( 𝐹  “  𝑠 )  →  ∃ 𝑦  ∈  𝑠 ( 𝐹 ‘ 𝑦 )  =  𝑡 ) ) | 
						
							| 64 | 3 59 | syl | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 65 | 64 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  ∧  𝑦  ∈  𝑠 )  →  Fun  𝐹 ) | 
						
							| 66 |  | fbelss | ⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝑠  ∈  𝐵 )  →  𝑠  ⊆  𝑌 ) | 
						
							| 67 | 1 66 | sylan | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  𝑠  ⊆  𝑌 ) | 
						
							| 68 | 3 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝑌 ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  dom  𝐹  =  𝑌 ) | 
						
							| 70 | 67 69 | sseqtrrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  𝑠  ⊆  dom  𝐹 ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  →  𝑠  ⊆  dom  𝐹 ) | 
						
							| 72 | 71 | sselda | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  ∧  𝑦  ∈  𝑠 )  →  𝑦  ∈  dom  𝐹 ) | 
						
							| 73 |  | fvimacnv | ⊢ ( ( Fun  𝐹  ∧  𝑦  ∈  dom  𝐹 )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  𝑥  ↔  𝑦  ∈  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 74 | 65 72 73 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  ∧  𝑦  ∈  𝑠 )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  𝑥  ↔  𝑦  ∈  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 75 |  | inelcm | ⊢ ( ( 𝑦  ∈  𝑠  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑥 ) )  →  ( 𝑠  ∩  ( ◡ 𝐹  “  𝑥 ) )  ≠  ∅ ) | 
						
							| 76 | 75 | ex | ⊢ ( 𝑦  ∈  𝑠  →  ( 𝑦  ∈  ( ◡ 𝐹  “  𝑥 )  →  ( 𝑠  ∩  ( ◡ 𝐹  “  𝑥 ) )  ≠  ∅ ) ) | 
						
							| 77 | 76 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  ∧  𝑦  ∈  𝑠 )  →  ( 𝑦  ∈  ( ◡ 𝐹  “  𝑥 )  →  ( 𝑠  ∩  ( ◡ 𝐹  “  𝑥 ) )  ≠  ∅ ) ) | 
						
							| 78 | 74 77 | sylbid | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  ∧  𝑦  ∈  𝑠 )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  𝑥  →  ( 𝑠  ∩  ( ◡ 𝐹  “  𝑥 ) )  ≠  ∅ ) ) | 
						
							| 79 |  | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑦 )  =  𝑡  →  ( ( 𝐹 ‘ 𝑦 )  ∈  𝑥  ↔  𝑡  ∈  𝑥 ) ) | 
						
							| 80 | 79 | imbi1d | ⊢ ( ( 𝐹 ‘ 𝑦 )  =  𝑡  →  ( ( ( 𝐹 ‘ 𝑦 )  ∈  𝑥  →  ( 𝑠  ∩  ( ◡ 𝐹  “  𝑥 ) )  ≠  ∅ )  ↔  ( 𝑡  ∈  𝑥  →  ( 𝑠  ∩  ( ◡ 𝐹  “  𝑥 ) )  ≠  ∅ ) ) ) | 
						
							| 81 | 78 80 | syl5ibcom | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  ∧  𝑦  ∈  𝑠 )  →  ( ( 𝐹 ‘ 𝑦 )  =  𝑡  →  ( 𝑡  ∈  𝑥  →  ( 𝑠  ∩  ( ◡ 𝐹  “  𝑥 ) )  ≠  ∅ ) ) ) | 
						
							| 82 | 81 | rexlimdva | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  →  ( ∃ 𝑦  ∈  𝑠 ( 𝐹 ‘ 𝑦 )  =  𝑡  →  ( 𝑡  ∈  𝑥  →  ( 𝑠  ∩  ( ◡ 𝐹  “  𝑥 ) )  ≠  ∅ ) ) ) | 
						
							| 83 | 63 82 | syld | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  →  ( 𝑡  ∈  ( 𝐹  “  𝑠 )  →  ( 𝑡  ∈  𝑥  →  ( 𝑠  ∩  ( ◡ 𝐹  “  𝑥 ) )  ≠  ∅ ) ) ) | 
						
							| 84 | 83 | impd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  →  ( ( 𝑡  ∈  ( 𝐹  “  𝑠 )  ∧  𝑡  ∈  𝑥 )  →  ( 𝑠  ∩  ( ◡ 𝐹  “  𝑥 ) )  ≠  ∅ ) ) | 
						
							| 85 | 58 84 | biimtrid | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  →  ( 𝑡  ∈  ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  →  ( 𝑠  ∩  ( ◡ 𝐹  “  𝑥 ) )  ≠  ∅ ) ) | 
						
							| 86 | 85 | exlimdv | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  →  ( ∃ 𝑡 𝑡  ∈  ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  →  ( 𝑠  ∩  ( ◡ 𝐹  “  𝑥 ) )  ≠  ∅ ) ) | 
						
							| 87 | 57 86 | biimtrid | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  →  ( ¬  ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  =  ∅  →  ( 𝑠  ∩  ( ◡ 𝐹  “  𝑥 ) )  ≠  ∅ ) ) | 
						
							| 88 | 56 87 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  →  ( 𝑠  ∩  ( ◡ 𝐹  “  𝑥 ) )  ≠  ∅ ) | 
						
							| 89 |  | ineq2 | ⊢ ( 𝑡  =  ( ◡ 𝐹  “  𝑥 )  →  ( 𝑠  ∩  𝑡 )  =  ( 𝑠  ∩  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 90 | 89 | neeq1d | ⊢ ( 𝑡  =  ( ◡ 𝐹  “  𝑥 )  →  ( ( 𝑠  ∩  𝑡 )  ≠  ∅  ↔  ( 𝑠  ∩  ( ◡ 𝐹  “  𝑥 ) )  ≠  ∅ ) ) | 
						
							| 91 | 88 90 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  ∧  𝑥  ∈  𝐿 )  →  ( 𝑡  =  ( ◡ 𝐹  “  𝑥 )  →  ( 𝑠  ∩  𝑡 )  ≠  ∅ ) ) | 
						
							| 92 | 91 | rexlimdva | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  ( ∃ 𝑥  ∈  𝐿 𝑡  =  ( ◡ 𝐹  “  𝑥 )  →  ( 𝑠  ∩  𝑡 )  ≠  ∅ ) ) | 
						
							| 93 | 36 92 | biimtrid | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  ( 𝑡  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  →  ( 𝑠  ∩  𝑡 )  ≠  ∅ ) ) | 
						
							| 94 | 93 | expimpd | ⊢ ( 𝜑  →  ( ( 𝑠  ∈  𝐵  ∧  𝑡  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  →  ( 𝑠  ∩  𝑡 )  ≠  ∅ ) ) | 
						
							| 95 | 94 | ralrimivv | ⊢ ( 𝜑  →  ∀ 𝑠  ∈  𝐵 ∀ 𝑡  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ( 𝑠  ∩  𝑡 )  ≠  ∅ ) | 
						
							| 96 |  | fbunfip | ⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∈  ( fBas ‘ 𝑌 ) )  →  ( ¬  ∅  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) )  ↔  ∀ 𝑠  ∈  𝐵 ∀ 𝑡  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ( 𝑠  ∩  𝑡 )  ≠  ∅ ) ) | 
						
							| 97 | 1 25 96 | syl2anc | ⊢ ( 𝜑  →  ( ¬  ∅  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) )  ↔  ∀ 𝑠  ∈  𝐵 ∀ 𝑡  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ( 𝑠  ∩  𝑡 )  ≠  ∅ ) ) | 
						
							| 98 | 95 97 | mpbird | ⊢ ( 𝜑  →  ¬  ∅  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 99 |  | fsubbas | ⊢ ( 𝑌  ∈  dom  fBas  →  ( ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) )  ∈  ( fBas ‘ 𝑌 )  ↔  ( ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ⊆  𝒫  𝑌  ∧  ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ≠  ∅  ∧  ¬  ∅  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) ) ) | 
						
							| 100 | 1 7 99 | 3syl | ⊢ ( 𝜑  →  ( ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) )  ∈  ( fBas ‘ 𝑌 )  ↔  ( ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ⊆  𝒫  𝑌  ∧  ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ≠  ∅  ∧  ¬  ∅  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) ) ) | 
						
							| 101 | 28 33 98 100 | mpbir3and | ⊢ ( 𝜑  →  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) )  ∈  ( fBas ‘ 𝑌 ) ) | 
						
							| 102 |  | fgcl | ⊢ ( ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) )  ∈  ( fBas ‘ 𝑌 )  →  ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) )  ∈  ( Fil ‘ 𝑌 ) ) | 
						
							| 103 | 101 102 | syl | ⊢ ( 𝜑  →  ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) )  ∈  ( Fil ‘ 𝑌 ) ) | 
						
							| 104 |  | unexg | ⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∈  ( fBas ‘ 𝑌 ) )  →  ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ∈  V ) | 
						
							| 105 | 1 25 104 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ∈  V ) | 
						
							| 106 |  | ssfii | ⊢ ( ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ∈  V  →  ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ⊆  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 107 | 105 106 | syl | ⊢ ( 𝜑  →  ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ⊆  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 108 | 107 | unssad | ⊢ ( 𝜑  →  𝐵  ⊆  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 109 |  | ssfg | ⊢ ( ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) )  ∈  ( fBas ‘ 𝑌 )  →  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) )  ⊆  ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) ) | 
						
							| 110 | 101 109 | syl | ⊢ ( 𝜑  →  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) )  ⊆  ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) ) | 
						
							| 111 | 108 110 | sstrd | ⊢ ( 𝜑  →  𝐵  ⊆  ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) ) | 
						
							| 112 | 1 2 3 4 | fmfnfmlem4 | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝐿  ↔  ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑠  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ( 𝐹  “  𝑠 )  ⊆  𝑡 ) ) ) | 
						
							| 113 |  | elfm | ⊢ ( ( 𝑋  ∈  𝐿  ∧  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) )  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝑡  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) )  ↔  ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑠  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ( 𝐹  “  𝑠 )  ⊆  𝑡 ) ) ) | 
						
							| 114 | 15 101 3 113 | syl3anc | ⊢ ( 𝜑  →  ( 𝑡  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) )  ↔  ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑠  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ( 𝐹  “  𝑠 )  ⊆  𝑡 ) ) ) | 
						
							| 115 | 112 114 | bitr4d | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝐿  ↔  𝑡  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) ) ) | 
						
							| 116 | 115 | eqrdv | ⊢ ( 𝜑  →  𝐿  =  ( ( 𝑋  FilMap  𝐹 ) ‘ ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) ) | 
						
							| 117 |  | eqid | ⊢ ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) )  =  ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 118 | 117 | fmfg | ⊢ ( ( 𝑋  ∈  𝐿  ∧  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) )  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ( 𝑋  FilMap  𝐹 ) ‘ ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) )  =  ( ( 𝑋  FilMap  𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) ) ) | 
						
							| 119 | 15 101 3 118 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑋  FilMap  𝐹 ) ‘ ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) )  =  ( ( 𝑋  FilMap  𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) ) ) | 
						
							| 120 | 116 119 | eqtrd | ⊢ ( 𝜑  →  𝐿  =  ( ( 𝑋  FilMap  𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) ) ) | 
						
							| 121 |  | sseq2 | ⊢ ( 𝑓  =  ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) )  →  ( 𝐵  ⊆  𝑓  ↔  𝐵  ⊆  ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) ) ) | 
						
							| 122 |  | fveq2 | ⊢ ( 𝑓  =  ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) )  →  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝑓 )  =  ( ( 𝑋  FilMap  𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) ) ) | 
						
							| 123 | 122 | eqeq2d | ⊢ ( 𝑓  =  ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) )  →  ( 𝐿  =  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝑓 )  ↔  𝐿  =  ( ( 𝑋  FilMap  𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) ) ) ) | 
						
							| 124 | 121 123 | anbi12d | ⊢ ( 𝑓  =  ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) )  →  ( ( 𝐵  ⊆  𝑓  ∧  𝐿  =  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝑓 ) )  ↔  ( 𝐵  ⊆  ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) )  ∧  𝐿  =  ( ( 𝑋  FilMap  𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) ) ) ) ) | 
						
							| 125 | 124 | rspcev | ⊢ ( ( ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) )  ∈  ( Fil ‘ 𝑌 )  ∧  ( 𝐵  ⊆  ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) )  ∧  𝐿  =  ( ( 𝑋  FilMap  𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) ) ) )  →  ∃ 𝑓  ∈  ( Fil ‘ 𝑌 ) ( 𝐵  ⊆  𝑓  ∧  𝐿  =  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝑓 ) ) ) | 
						
							| 126 | 103 111 120 125 | syl12anc | ⊢ ( 𝜑  →  ∃ 𝑓  ∈  ( Fil ‘ 𝑌 ) ( 𝐵  ⊆  𝑓  ∧  𝐿  =  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝑓 ) ) ) |