Step |
Hyp |
Ref |
Expression |
1 |
|
fmfnfm.b |
⊢ ( 𝜑 → 𝐵 ∈ ( fBas ‘ 𝑌 ) ) |
2 |
|
fmfnfm.l |
⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) |
3 |
|
fmfnfm.f |
⊢ ( 𝜑 → 𝐹 : 𝑌 ⟶ 𝑋 ) |
4 |
|
fmfnfm.fm |
⊢ ( 𝜑 → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ 𝐿 ) |
5 |
|
fbsspw |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐵 ⊆ 𝒫 𝑌 ) |
6 |
1 5
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ 𝒫 𝑌 ) |
7 |
|
elfvdm |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝑌 ∈ dom fBas ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ dom fBas ) |
9 |
|
ffn |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → 𝐹 Fn 𝑌 ) |
10 |
|
dffn4 |
⊢ ( 𝐹 Fn 𝑌 ↔ 𝐹 : 𝑌 –onto→ ran 𝐹 ) |
11 |
9 10
|
sylib |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → 𝐹 : 𝑌 –onto→ ran 𝐹 ) |
12 |
|
foima |
⊢ ( 𝐹 : 𝑌 –onto→ ran 𝐹 → ( 𝐹 “ 𝑌 ) = ran 𝐹 ) |
13 |
3 11 12
|
3syl |
⊢ ( 𝜑 → ( 𝐹 “ 𝑌 ) = ran 𝐹 ) |
14 |
|
filtop |
⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐿 ) |
15 |
2 14
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐿 ) |
16 |
|
fgcl |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → ( 𝑌 filGen 𝐵 ) ∈ ( Fil ‘ 𝑌 ) ) |
17 |
|
filtop |
⊢ ( ( 𝑌 filGen 𝐵 ) ∈ ( Fil ‘ 𝑌 ) → 𝑌 ∈ ( 𝑌 filGen 𝐵 ) ) |
18 |
1 16 17
|
3syl |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑌 filGen 𝐵 ) ) |
19 |
|
eqid |
⊢ ( 𝑌 filGen 𝐵 ) = ( 𝑌 filGen 𝐵 ) |
20 |
19
|
imaelfm |
⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑌 ∈ ( 𝑌 filGen 𝐵 ) ) → ( 𝐹 “ 𝑌 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ) |
21 |
15 1 3 18 20
|
syl31anc |
⊢ ( 𝜑 → ( 𝐹 “ 𝑌 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ) |
22 |
13 21
|
eqeltrrd |
⊢ ( 𝜑 → ran 𝐹 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ) |
23 |
4 22
|
sseldd |
⊢ ( 𝜑 → ran 𝐹 ∈ 𝐿 ) |
24 |
|
rnelfmlem |
⊢ ( ( ( 𝑌 ∈ dom fBas ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ) |
25 |
8 2 3 23 24
|
syl31anc |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ) |
26 |
|
fbsspw |
⊢ ( ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝒫 𝑌 ) |
27 |
25 26
|
syl |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝒫 𝑌 ) |
28 |
6 27
|
unssd |
⊢ ( 𝜑 → ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ 𝒫 𝑌 ) |
29 |
|
ssun1 |
⊢ 𝐵 ⊆ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) |
30 |
|
fbasne0 |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐵 ≠ ∅ ) |
31 |
1 30
|
syl |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
32 |
|
ssn0 |
⊢ ( ( 𝐵 ⊆ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ∧ 𝐵 ≠ ∅ ) → ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ≠ ∅ ) |
33 |
29 31 32
|
sylancr |
⊢ ( 𝜑 → ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ≠ ∅ ) |
34 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) = ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) |
35 |
34
|
elrnmpt |
⊢ ( 𝑡 ∈ V → ( 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
36 |
35
|
elv |
⊢ ( 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑥 ) ) |
37 |
|
0nelfil |
⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → ¬ ∅ ∈ 𝐿 ) |
38 |
2 37
|
syl |
⊢ ( 𝜑 → ¬ ∅ ∈ 𝐿 ) |
39 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ¬ ∅ ∈ 𝐿 ) |
40 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) |
41 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ 𝐿 ) |
42 |
15 1 3
|
3jca |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐿 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ) |
43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐿 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ) |
44 |
|
ssfg |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝐵 ⊆ ( 𝑌 filGen 𝐵 ) ) |
45 |
1 44
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ ( 𝑌 filGen 𝐵 ) ) |
46 |
45
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → 𝑠 ∈ ( 𝑌 filGen 𝐵 ) ) |
47 |
19
|
imaelfm |
⊢ ( ( ( 𝑋 ∈ 𝐿 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑠 ∈ ( 𝑌 filGen 𝐵 ) ) → ( 𝐹 “ 𝑠 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ) |
48 |
43 46 47
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → ( 𝐹 “ 𝑠 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ) |
49 |
41 48
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) |
50 |
40 49
|
jca |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) ) |
51 |
|
filin |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 “ 𝑠 ) ∈ 𝐿 ∧ 𝑥 ∈ 𝐿 ) → ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ∈ 𝐿 ) |
52 |
51
|
3expa |
⊢ ( ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 “ 𝑠 ) ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) → ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ∈ 𝐿 ) |
53 |
50 52
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ∈ 𝐿 ) |
54 |
|
eleq1 |
⊢ ( ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) = ∅ → ( ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ∈ 𝐿 ↔ ∅ ∈ 𝐿 ) ) |
55 |
53 54
|
syl5ibcom |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) = ∅ → ∅ ∈ 𝐿 ) ) |
56 |
39 55
|
mtod |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ¬ ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) = ∅ ) |
57 |
|
neq0 |
⊢ ( ¬ ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) = ∅ ↔ ∃ 𝑡 𝑡 ∈ ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ) |
58 |
|
elin |
⊢ ( 𝑡 ∈ ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) ↔ ( 𝑡 ∈ ( 𝐹 “ 𝑠 ) ∧ 𝑡 ∈ 𝑥 ) ) |
59 |
|
ffun |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → Fun 𝐹 ) |
60 |
|
fvelima |
⊢ ( ( Fun 𝐹 ∧ 𝑡 ∈ ( 𝐹 “ 𝑠 ) ) → ∃ 𝑦 ∈ 𝑠 ( 𝐹 ‘ 𝑦 ) = 𝑡 ) |
61 |
60
|
ex |
⊢ ( Fun 𝐹 → ( 𝑡 ∈ ( 𝐹 “ 𝑠 ) → ∃ 𝑦 ∈ 𝑠 ( 𝐹 ‘ 𝑦 ) = 𝑡 ) ) |
62 |
3 59 61
|
3syl |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐹 “ 𝑠 ) → ∃ 𝑦 ∈ 𝑠 ( 𝐹 ‘ 𝑦 ) = 𝑡 ) ) |
63 |
62
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( 𝑡 ∈ ( 𝐹 “ 𝑠 ) → ∃ 𝑦 ∈ 𝑠 ( 𝐹 ‘ 𝑦 ) = 𝑡 ) ) |
64 |
3 59
|
syl |
⊢ ( 𝜑 → Fun 𝐹 ) |
65 |
64
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑦 ∈ 𝑠 ) → Fun 𝐹 ) |
66 |
|
fbelss |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑠 ∈ 𝐵 ) → 𝑠 ⊆ 𝑌 ) |
67 |
1 66
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → 𝑠 ⊆ 𝑌 ) |
68 |
3
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝑌 ) |
69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → dom 𝐹 = 𝑌 ) |
70 |
67 69
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → 𝑠 ⊆ dom 𝐹 ) |
71 |
70
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → 𝑠 ⊆ dom 𝐹 ) |
72 |
71
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑦 ∈ 𝑠 ) → 𝑦 ∈ dom 𝐹 ) |
73 |
|
fvimacnv |
⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ↔ 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) ) |
74 |
65 72 73
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑦 ∈ 𝑠 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ↔ 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) ) |
75 |
|
inelcm |
⊢ ( ( 𝑦 ∈ 𝑠 ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) ) → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) |
76 |
75
|
ex |
⊢ ( 𝑦 ∈ 𝑠 → ( 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) |
77 |
76
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑦 ∈ 𝑠 ) → ( 𝑦 ∈ ( ◡ 𝐹 “ 𝑥 ) → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) |
78 |
74 77
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑦 ∈ 𝑠 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) |
79 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑡 → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 ↔ 𝑡 ∈ 𝑥 ) ) |
80 |
79
|
imbi1d |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑡 → ( ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑥 → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ↔ ( 𝑡 ∈ 𝑥 → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) ) |
81 |
78 80
|
syl5ibcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) ∧ 𝑦 ∈ 𝑠 ) → ( ( 𝐹 ‘ 𝑦 ) = 𝑡 → ( 𝑡 ∈ 𝑥 → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) ) |
82 |
81
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( ∃ 𝑦 ∈ 𝑠 ( 𝐹 ‘ 𝑦 ) = 𝑡 → ( 𝑡 ∈ 𝑥 → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) ) |
83 |
63 82
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( 𝑡 ∈ ( 𝐹 “ 𝑠 ) → ( 𝑡 ∈ 𝑥 → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) ) |
84 |
83
|
impd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( ( 𝑡 ∈ ( 𝐹 “ 𝑠 ) ∧ 𝑡 ∈ 𝑥 ) → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) |
85 |
58 84
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( 𝑡 ∈ ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) |
86 |
85
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( ∃ 𝑡 𝑡 ∈ ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) |
87 |
57 86
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( ¬ ( ( 𝐹 “ 𝑠 ) ∩ 𝑥 ) = ∅ → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) |
88 |
56 87
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) |
89 |
|
ineq2 |
⊢ ( 𝑡 = ( ◡ 𝐹 “ 𝑥 ) → ( 𝑠 ∩ 𝑡 ) = ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ) |
90 |
89
|
neeq1d |
⊢ ( 𝑡 = ( ◡ 𝐹 “ 𝑥 ) → ( ( 𝑠 ∩ 𝑡 ) ≠ ∅ ↔ ( 𝑠 ∩ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) |
91 |
88 90
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐿 ) → ( 𝑡 = ( ◡ 𝐹 “ 𝑥 ) → ( 𝑠 ∩ 𝑡 ) ≠ ∅ ) ) |
92 |
91
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑥 ) → ( 𝑠 ∩ 𝑡 ) ≠ ∅ ) ) |
93 |
36 92
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) → ( 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) → ( 𝑠 ∩ 𝑡 ) ≠ ∅ ) ) |
94 |
93
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑠 ∈ 𝐵 ∧ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) → ( 𝑠 ∩ 𝑡 ) ≠ ∅ ) ) |
95 |
94
|
ralrimivv |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝐵 ∀ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝑠 ∩ 𝑡 ) ≠ ∅ ) |
96 |
|
fbunfip |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ↔ ∀ 𝑠 ∈ 𝐵 ∀ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝑠 ∩ 𝑡 ) ≠ ∅ ) ) |
97 |
1 25 96
|
syl2anc |
⊢ ( 𝜑 → ( ¬ ∅ ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ↔ ∀ 𝑠 ∈ 𝐵 ∀ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝑠 ∩ 𝑡 ) ≠ ∅ ) ) |
98 |
95 97
|
mpbird |
⊢ ( 𝜑 → ¬ ∅ ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
99 |
|
fsubbas |
⊢ ( 𝑌 ∈ dom fBas → ( ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ∈ ( fBas ‘ 𝑌 ) ↔ ( ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ 𝒫 𝑌 ∧ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) |
100 |
1 7 99
|
3syl |
⊢ ( 𝜑 → ( ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ∈ ( fBas ‘ 𝑌 ) ↔ ( ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ 𝒫 𝑌 ∧ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) |
101 |
28 33 98 100
|
mpbir3and |
⊢ ( 𝜑 → ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ∈ ( fBas ‘ 𝑌 ) ) |
102 |
|
fgcl |
⊢ ( ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ∈ ( fBas ‘ 𝑌 ) → ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ∈ ( Fil ‘ 𝑌 ) ) |
103 |
101 102
|
syl |
⊢ ( 𝜑 → ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ∈ ( Fil ‘ 𝑌 ) ) |
104 |
|
unexg |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ) → ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ∈ V ) |
105 |
1 25 104
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ∈ V ) |
106 |
|
ssfii |
⊢ ( ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ∈ V → ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
107 |
105 106
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ⊆ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
108 |
107
|
unssad |
⊢ ( 𝜑 → 𝐵 ⊆ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
109 |
|
ssfg |
⊢ ( ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ∈ ( fBas ‘ 𝑌 ) → ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ⊆ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) |
110 |
101 109
|
syl |
⊢ ( 𝜑 → ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ⊆ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) |
111 |
108 110
|
sstrd |
⊢ ( 𝜑 → 𝐵 ⊆ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) |
112 |
1 2 3 4
|
fmfnfmlem4 |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐿 ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) ) |
113 |
|
elfm |
⊢ ( ( 𝑋 ∈ 𝐿 ∧ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑡 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) ) |
114 |
15 101 3 113
|
syl3anc |
⊢ ( 𝜑 → ( 𝑡 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ( 𝐹 “ 𝑠 ) ⊆ 𝑡 ) ) ) |
115 |
112 114
|
bitr4d |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐿 ↔ 𝑡 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) |
116 |
115
|
eqrdv |
⊢ ( 𝜑 → 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) |
117 |
|
eqid |
⊢ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) = ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) |
118 |
117
|
fmfg |
⊢ ( ( 𝑋 ∈ 𝐿 ∧ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) = ( ( 𝑋 FilMap 𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) |
119 |
15 101 3 118
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 FilMap 𝐹 ) ‘ ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) = ( ( 𝑋 FilMap 𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) |
120 |
116 119
|
eqtrd |
⊢ ( 𝜑 → 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) |
121 |
|
sseq2 |
⊢ ( 𝑓 = ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) → ( 𝐵 ⊆ 𝑓 ↔ 𝐵 ⊆ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) |
122 |
|
fveq2 |
⊢ ( 𝑓 = ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑓 ) = ( ( 𝑋 FilMap 𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) |
123 |
122
|
eqeq2d |
⊢ ( 𝑓 = ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) → ( 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑓 ) ↔ 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) ) |
124 |
121 123
|
anbi12d |
⊢ ( 𝑓 = ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) → ( ( 𝐵 ⊆ 𝑓 ∧ 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑓 ) ) ↔ ( 𝐵 ⊆ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ∧ 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) ) ) |
125 |
124
|
rspcev |
⊢ ( ( ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ∈ ( Fil ‘ 𝑌 ) ∧ ( 𝐵 ⊆ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ∧ 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ ( 𝑌 filGen ( fi ‘ ( 𝐵 ∪ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) ) ) ) ) → ∃ 𝑓 ∈ ( Fil ‘ 𝑌 ) ( 𝐵 ⊆ 𝑓 ∧ 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑓 ) ) ) |
126 |
103 111 120 125
|
syl12anc |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ( Fil ‘ 𝑌 ) ( 𝐵 ⊆ 𝑓 ∧ 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ 𝑓 ) ) ) |