| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmfnfm.b | ⊢ ( 𝜑  →  𝐵  ∈  ( fBas ‘ 𝑌 ) ) | 
						
							| 2 |  | fmfnfm.l | ⊢ ( 𝜑  →  𝐿  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 3 |  | fmfnfm.f | ⊢ ( 𝜑  →  𝐹 : 𝑌 ⟶ 𝑋 ) | 
						
							| 4 |  | fmfnfm.fm | ⊢ ( 𝜑  →  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  ⊆  𝐿 ) | 
						
							| 5 |  | fbssfi | ⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝑠  ∈  ( fi ‘ 𝐵 ) )  →  ∃ 𝑤  ∈  𝐵 𝑤  ⊆  𝑠 ) | 
						
							| 6 | 1 5 | sylan | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( fi ‘ 𝐵 ) )  →  ∃ 𝑤  ∈  𝐵 𝑤  ⊆  𝑠 ) | 
						
							| 7 |  | sstr2 | ⊢ ( ( 𝐹  “  𝑤 )  ⊆  ( 𝐹  “  𝑠 )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝐹  “  𝑤 )  ⊆  𝑡 ) ) | 
						
							| 8 |  | imass2 | ⊢ ( 𝑤  ⊆  𝑠  →  ( 𝐹  “  𝑤 )  ⊆  ( 𝐹  “  𝑠 ) ) | 
						
							| 9 | 7 8 | syl11 | ⊢ ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑤  ⊆  𝑠  →  ( 𝐹  “  𝑤 )  ⊆  𝑡 ) ) | 
						
							| 10 | 9 | reximdv | ⊢ ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( ∃ 𝑤  ∈  𝐵 𝑤  ⊆  𝑠  →  ∃ 𝑤  ∈  𝐵 ( 𝐹  “  𝑤 )  ⊆  𝑡 ) ) | 
						
							| 11 | 6 10 | syl5com | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( fi ‘ 𝐵 ) )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ∃ 𝑤  ∈  𝐵 ( 𝐹  “  𝑤 )  ⊆  𝑡 ) ) | 
						
							| 12 |  | filtop | ⊢ ( 𝐿  ∈  ( Fil ‘ 𝑋 )  →  𝑋  ∈  𝐿 ) | 
						
							| 13 | 2 12 | syl | ⊢ ( 𝜑  →  𝑋  ∈  𝐿 ) | 
						
							| 14 |  | elfm | ⊢ ( ( 𝑋  ∈  𝐿  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝑡  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  ↔  ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑤  ∈  𝐵 ( 𝐹  “  𝑤 )  ⊆  𝑡 ) ) ) | 
						
							| 15 | 13 1 3 14 | syl3anc | ⊢ ( 𝜑  →  ( 𝑡  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  ↔  ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑤  ∈  𝐵 ( 𝐹  “  𝑤 )  ⊆  𝑡 ) ) ) | 
						
							| 16 | 4 | sseld | ⊢ ( 𝜑  →  ( 𝑡  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  →  𝑡  ∈  𝐿 ) ) | 
						
							| 17 | 15 16 | sylbird | ⊢ ( 𝜑  →  ( ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑤  ∈  𝐵 ( 𝐹  “  𝑤 )  ⊆  𝑡 )  →  𝑡  ∈  𝐿 ) ) | 
						
							| 18 | 17 | expcomd | ⊢ ( 𝜑  →  ( ∃ 𝑤  ∈  𝐵 ( 𝐹  “  𝑤 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( fi ‘ 𝐵 ) )  →  ( ∃ 𝑤  ∈  𝐵 ( 𝐹  “  𝑤 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) | 
						
							| 20 | 11 19 | syld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( fi ‘ 𝐵 ) )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) | 
						
							| 21 | 20 | ex | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( fi ‘ 𝐵 )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) |