Step |
Hyp |
Ref |
Expression |
1 |
|
fmfnfm.b |
⊢ ( 𝜑 → 𝐵 ∈ ( fBas ‘ 𝑌 ) ) |
2 |
|
fmfnfm.l |
⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) |
3 |
|
fmfnfm.f |
⊢ ( 𝜑 → 𝐹 : 𝑌 ⟶ 𝑋 ) |
4 |
|
fmfnfm.fm |
⊢ ( 𝜑 → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ 𝐿 ) |
5 |
|
fbssfi |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑠 ∈ ( fi ‘ 𝐵 ) ) → ∃ 𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠 ) |
6 |
1 5
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( fi ‘ 𝐵 ) ) → ∃ 𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠 ) |
7 |
|
sstr2 |
⊢ ( ( 𝐹 “ 𝑤 ) ⊆ ( 𝐹 “ 𝑠 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝐹 “ 𝑤 ) ⊆ 𝑡 ) ) |
8 |
|
imass2 |
⊢ ( 𝑤 ⊆ 𝑠 → ( 𝐹 “ 𝑤 ) ⊆ ( 𝐹 “ 𝑠 ) ) |
9 |
7 8
|
syl11 |
⊢ ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑤 ⊆ 𝑠 → ( 𝐹 “ 𝑤 ) ⊆ 𝑡 ) ) |
10 |
9
|
reximdv |
⊢ ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( ∃ 𝑤 ∈ 𝐵 𝑤 ⊆ 𝑠 → ∃ 𝑤 ∈ 𝐵 ( 𝐹 “ 𝑤 ) ⊆ 𝑡 ) ) |
11 |
6 10
|
syl5com |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( fi ‘ 𝐵 ) ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ∃ 𝑤 ∈ 𝐵 ( 𝐹 “ 𝑤 ) ⊆ 𝑡 ) ) |
12 |
|
filtop |
⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐿 ) |
13 |
2 12
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐿 ) |
14 |
|
elfm |
⊢ ( ( 𝑋 ∈ 𝐿 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑡 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝐹 “ 𝑤 ) ⊆ 𝑡 ) ) ) |
15 |
13 1 3 14
|
syl3anc |
⊢ ( 𝜑 → ( 𝑡 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝐹 “ 𝑤 ) ⊆ 𝑡 ) ) ) |
16 |
4
|
sseld |
⊢ ( 𝜑 → ( 𝑡 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) → 𝑡 ∈ 𝐿 ) ) |
17 |
15 16
|
sylbird |
⊢ ( 𝜑 → ( ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝐹 “ 𝑤 ) ⊆ 𝑡 ) → 𝑡 ∈ 𝐿 ) ) |
18 |
17
|
expcomd |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ 𝐵 ( 𝐹 “ 𝑤 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( fi ‘ 𝐵 ) ) → ( ∃ 𝑤 ∈ 𝐵 ( 𝐹 “ 𝑤 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) |
20 |
11 19
|
syld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( fi ‘ 𝐵 ) ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) |
21 |
20
|
ex |
⊢ ( 𝜑 → ( 𝑠 ∈ ( fi ‘ 𝐵 ) → ( ( 𝐹 “ 𝑠 ) ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿 ) ) ) ) |