| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmfnfm.b | ⊢ ( 𝜑  →  𝐵  ∈  ( fBas ‘ 𝑌 ) ) | 
						
							| 2 |  | fmfnfm.l | ⊢ ( 𝜑  →  𝐿  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 3 |  | fmfnfm.f | ⊢ ( 𝜑  →  𝐹 : 𝑌 ⟶ 𝑋 ) | 
						
							| 4 |  | fmfnfm.fm | ⊢ ( 𝜑  →  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  ⊆  𝐿 ) | 
						
							| 5 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  𝐿  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 6 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  𝑥  ∈  𝐿 ) | 
						
							| 7 |  | ffn | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  𝐹  Fn  𝑌 ) | 
						
							| 8 |  | dffn4 | ⊢ ( 𝐹  Fn  𝑌  ↔  𝐹 : 𝑌 –onto→ ran  𝐹 ) | 
						
							| 9 | 7 8 | sylib | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  𝐹 : 𝑌 –onto→ ran  𝐹 ) | 
						
							| 10 |  | foima | ⊢ ( 𝐹 : 𝑌 –onto→ ran  𝐹  →  ( 𝐹  “  𝑌 )  =  ran  𝐹 ) | 
						
							| 11 | 3 9 10 | 3syl | ⊢ ( 𝜑  →  ( 𝐹  “  𝑌 )  =  ran  𝐹 ) | 
						
							| 12 |  | filtop | ⊢ ( 𝐿  ∈  ( Fil ‘ 𝑋 )  →  𝑋  ∈  𝐿 ) | 
						
							| 13 | 2 12 | syl | ⊢ ( 𝜑  →  𝑋  ∈  𝐿 ) | 
						
							| 14 |  | fgcl | ⊢ ( 𝐵  ∈  ( fBas ‘ 𝑌 )  →  ( 𝑌 filGen 𝐵 )  ∈  ( Fil ‘ 𝑌 ) ) | 
						
							| 15 |  | filtop | ⊢ ( ( 𝑌 filGen 𝐵 )  ∈  ( Fil ‘ 𝑌 )  →  𝑌  ∈  ( 𝑌 filGen 𝐵 ) ) | 
						
							| 16 | 1 14 15 | 3syl | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑌 filGen 𝐵 ) ) | 
						
							| 17 |  | eqid | ⊢ ( 𝑌 filGen 𝐵 )  =  ( 𝑌 filGen 𝐵 ) | 
						
							| 18 | 17 | imaelfm | ⊢ ( ( ( 𝑋  ∈  𝐿  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑌  ∈  ( 𝑌 filGen 𝐵 ) )  →  ( 𝐹  “  𝑌 )  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 ) ) | 
						
							| 19 | 13 1 3 16 18 | syl31anc | ⊢ ( 𝜑  →  ( 𝐹  “  𝑌 )  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 ) ) | 
						
							| 20 | 11 19 | eqeltrrd | ⊢ ( 𝜑  →  ran  𝐹  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 ) ) | 
						
							| 21 | 4 20 | sseldd | ⊢ ( 𝜑  →  ran  𝐹  ∈  𝐿 ) | 
						
							| 22 | 21 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ran  𝐹  ∈  𝐿 ) | 
						
							| 23 |  | filin | ⊢ ( ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ∈  𝐿  ∧  ran  𝐹  ∈  𝐿 )  →  ( 𝑥  ∩  ran  𝐹 )  ∈  𝐿 ) | 
						
							| 24 | 5 6 22 23 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( 𝑥  ∩  ran  𝐹 )  ∈  𝐿 ) | 
						
							| 25 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  𝑡  ⊆  𝑋 ) | 
						
							| 26 |  | elin | ⊢ ( 𝑦  ∈  ( 𝑥  ∩  ran  𝐹 )  ↔  ( 𝑦  ∈  𝑥  ∧  𝑦  ∈  ran  𝐹 ) ) | 
						
							| 27 |  | fvelrnb | ⊢ ( 𝐹  Fn  𝑌  →  ( 𝑦  ∈  ran  𝐹  ↔  ∃ 𝑧  ∈  𝑌 ( 𝐹 ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 28 | 3 7 27 | 3syl | ⊢ ( 𝜑  →  ( 𝑦  ∈  ran  𝐹  ↔  ∃ 𝑧  ∈  𝑌 ( 𝐹 ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡 )  →  ( 𝑦  ∈  ran  𝐹  ↔  ∃ 𝑧  ∈  𝑌 ( 𝐹 ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 30 | 3 | ffund | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 31 | 30 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑧  ∈  𝑌 ) )  →  Fun  𝐹 ) | 
						
							| 32 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑧  ∈  𝑌 ) )  →  𝑧  ∈  𝑌 ) | 
						
							| 33 | 3 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝑌 ) | 
						
							| 34 | 33 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑧  ∈  𝑌 ) )  →  dom  𝐹  =  𝑌 ) | 
						
							| 35 | 32 34 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑧  ∈  𝑌 ) )  →  𝑧  ∈  dom  𝐹 ) | 
						
							| 36 |  | fvimacnv | ⊢ ( ( Fun  𝐹  ∧  𝑧  ∈  dom  𝐹 )  →  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑥  ↔  𝑧  ∈  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 37 | 31 35 36 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑧  ∈  𝑌 ) )  →  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑥  ↔  𝑧  ∈  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 38 |  | cnvimass | ⊢ ( ◡ 𝐹  “  𝑥 )  ⊆  dom  𝐹 | 
						
							| 39 |  | funfvima2 | ⊢ ( ( Fun  𝐹  ∧  ( ◡ 𝐹  “  𝑥 )  ⊆  dom  𝐹 )  →  ( 𝑧  ∈  ( ◡ 𝐹  “  𝑥 )  →  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 40 | 31 38 39 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑧  ∈  𝑌 ) )  →  ( 𝑧  ∈  ( ◡ 𝐹  “  𝑥 )  →  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 41 |  | ssel | ⊢ ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  →  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑡 ) ) | 
						
							| 42 | 41 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑧  ∈  𝑌 ) )  →  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑡 ) ) | 
						
							| 43 | 40 42 | syld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑧  ∈  𝑌 ) )  →  ( 𝑧  ∈  ( ◡ 𝐹  “  𝑥 )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑡 ) ) | 
						
							| 44 | 37 43 | sylbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑧  ∈  𝑌 ) )  →  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑥  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑡 ) ) | 
						
							| 45 |  | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑧 )  =  𝑦  →  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑥  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 46 |  | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑧 )  =  𝑦  →  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ↔  𝑦  ∈  𝑡 ) ) | 
						
							| 47 | 45 46 | imbi12d | ⊢ ( ( 𝐹 ‘ 𝑧 )  =  𝑦  →  ( ( ( 𝐹 ‘ 𝑧 )  ∈  𝑥  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑡 )  ↔  ( 𝑦  ∈  𝑥  →  𝑦  ∈  𝑡 ) ) ) | 
						
							| 48 | 44 47 | syl5ibcom | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑧  ∈  𝑌 ) )  →  ( ( 𝐹 ‘ 𝑧 )  =  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑦  ∈  𝑡 ) ) ) | 
						
							| 49 | 48 | expr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡 )  →  ( 𝑧  ∈  𝑌  →  ( ( 𝐹 ‘ 𝑧 )  =  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑦  ∈  𝑡 ) ) ) ) | 
						
							| 50 | 49 | rexlimdv | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡 )  →  ( ∃ 𝑧  ∈  𝑌 ( 𝐹 ‘ 𝑧 )  =  𝑦  →  ( 𝑦  ∈  𝑥  →  𝑦  ∈  𝑡 ) ) ) | 
						
							| 51 | 29 50 | sylbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡 )  →  ( 𝑦  ∈  ran  𝐹  →  ( 𝑦  ∈  𝑥  →  𝑦  ∈  𝑡 ) ) ) | 
						
							| 52 | 51 | impcomd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡 )  →  ( ( 𝑦  ∈  𝑥  ∧  𝑦  ∈  ran  𝐹 )  →  𝑦  ∈  𝑡 ) ) | 
						
							| 53 | 52 | adantrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( ( 𝑦  ∈  𝑥  ∧  𝑦  ∈  ran  𝐹 )  →  𝑦  ∈  𝑡 ) ) | 
						
							| 54 | 26 53 | biimtrid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( 𝑦  ∈  ( 𝑥  ∩  ran  𝐹 )  →  𝑦  ∈  𝑡 ) ) | 
						
							| 55 | 54 | ssrdv | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( 𝑥  ∩  ran  𝐹 )  ⊆  𝑡 ) | 
						
							| 56 |  | filss | ⊢ ( ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  ( ( 𝑥  ∩  ran  𝐹 )  ∈  𝐿  ∧  𝑡  ⊆  𝑋  ∧  ( 𝑥  ∩  ran  𝐹 )  ⊆  𝑡 ) )  →  𝑡  ∈  𝐿 ) | 
						
							| 57 | 5 24 25 55 56 | syl13anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  𝑡  ∈  𝐿 ) | 
						
							| 58 | 57 | exp32 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  →  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) | 
						
							| 59 |  | imaeq2 | ⊢ ( 𝑠  =  ( ◡ 𝐹  “  𝑥 )  →  ( 𝐹  “  𝑠 )  =  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 60 | 59 | sseq1d | ⊢ ( 𝑠  =  ( ◡ 𝐹  “  𝑥 )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  ↔  ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡 ) ) | 
						
							| 61 | 60 | imbi1d | ⊢ ( 𝑠  =  ( ◡ 𝐹  “  𝑥 )  →  ( ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) )  ↔  ( ( 𝐹  “  ( ◡ 𝐹  “  𝑥 ) )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) | 
						
							| 62 | 58 61 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐿 )  →  ( 𝑠  =  ( ◡ 𝐹  “  𝑥 )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) | 
						
							| 63 | 62 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐿 𝑠  =  ( ◡ 𝐹  “  𝑥 )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) |