Metamath Proof Explorer


Theorem fmfnfmlem3

Description: Lemma for fmfnfm . (Contributed by Jeff Hankins, 19-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypotheses fmfnfm.b ( 𝜑𝐵 ∈ ( fBas ‘ 𝑌 ) )
fmfnfm.l ( 𝜑𝐿 ∈ ( Fil ‘ 𝑋 ) )
fmfnfm.f ( 𝜑𝐹 : 𝑌𝑋 )
fmfnfm.fm ( 𝜑 → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ 𝐿 )
Assertion fmfnfmlem3 ( 𝜑 → ( fi ‘ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ) = ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 fmfnfm.b ( 𝜑𝐵 ∈ ( fBas ‘ 𝑌 ) )
2 fmfnfm.l ( 𝜑𝐿 ∈ ( Fil ‘ 𝑋 ) )
3 fmfnfm.f ( 𝜑𝐹 : 𝑌𝑋 )
4 fmfnfm.fm ( 𝜑 → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ 𝐿 )
5 filin ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦𝐿𝑧𝐿 ) → ( 𝑦𝑧 ) ∈ 𝐿 )
6 5 3expb ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑦𝐿𝑧𝐿 ) ) → ( 𝑦𝑧 ) ∈ 𝐿 )
7 2 6 sylan ( ( 𝜑 ∧ ( 𝑦𝐿𝑧𝐿 ) ) → ( 𝑦𝑧 ) ∈ 𝐿 )
8 ffun ( 𝐹 : 𝑌𝑋 → Fun 𝐹 )
9 funcnvcnv ( Fun 𝐹 → Fun 𝐹 )
10 imain ( Fun 𝐹 → ( 𝐹 “ ( 𝑦𝑧 ) ) = ( ( 𝐹𝑦 ) ∩ ( 𝐹𝑧 ) ) )
11 10 eqcomd ( Fun 𝐹 → ( ( 𝐹𝑦 ) ∩ ( 𝐹𝑧 ) ) = ( 𝐹 “ ( 𝑦𝑧 ) ) )
12 3 8 9 11 4syl ( 𝜑 → ( ( 𝐹𝑦 ) ∩ ( 𝐹𝑧 ) ) = ( 𝐹 “ ( 𝑦𝑧 ) ) )
13 12 adantr ( ( 𝜑 ∧ ( 𝑦𝐿𝑧𝐿 ) ) → ( ( 𝐹𝑦 ) ∩ ( 𝐹𝑧 ) ) = ( 𝐹 “ ( 𝑦𝑧 ) ) )
14 imaeq2 ( 𝑥 = ( 𝑦𝑧 ) → ( 𝐹𝑥 ) = ( 𝐹 “ ( 𝑦𝑧 ) ) )
15 14 rspceeqv ( ( ( 𝑦𝑧 ) ∈ 𝐿 ∧ ( ( 𝐹𝑦 ) ∩ ( 𝐹𝑧 ) ) = ( 𝐹 “ ( 𝑦𝑧 ) ) ) → ∃ 𝑥𝐿 ( ( 𝐹𝑦 ) ∩ ( 𝐹𝑧 ) ) = ( 𝐹𝑥 ) )
16 7 13 15 syl2anc ( ( 𝜑 ∧ ( 𝑦𝐿𝑧𝐿 ) ) → ∃ 𝑥𝐿 ( ( 𝐹𝑦 ) ∩ ( 𝐹𝑧 ) ) = ( 𝐹𝑥 ) )
17 ineq12 ( ( 𝑠 = ( 𝐹𝑦 ) ∧ 𝑡 = ( 𝐹𝑧 ) ) → ( 𝑠𝑡 ) = ( ( 𝐹𝑦 ) ∩ ( 𝐹𝑧 ) ) )
18 17 eqeq1d ( ( 𝑠 = ( 𝐹𝑦 ) ∧ 𝑡 = ( 𝐹𝑧 ) ) → ( ( 𝑠𝑡 ) = ( 𝐹𝑥 ) ↔ ( ( 𝐹𝑦 ) ∩ ( 𝐹𝑧 ) ) = ( 𝐹𝑥 ) ) )
19 18 rexbidv ( ( 𝑠 = ( 𝐹𝑦 ) ∧ 𝑡 = ( 𝐹𝑧 ) ) → ( ∃ 𝑥𝐿 ( 𝑠𝑡 ) = ( 𝐹𝑥 ) ↔ ∃ 𝑥𝐿 ( ( 𝐹𝑦 ) ∩ ( 𝐹𝑧 ) ) = ( 𝐹𝑥 ) ) )
20 16 19 syl5ibrcom ( ( 𝜑 ∧ ( 𝑦𝐿𝑧𝐿 ) ) → ( ( 𝑠 = ( 𝐹𝑦 ) ∧ 𝑡 = ( 𝐹𝑧 ) ) → ∃ 𝑥𝐿 ( 𝑠𝑡 ) = ( 𝐹𝑥 ) ) )
21 20 rexlimdvva ( 𝜑 → ( ∃ 𝑦𝐿𝑧𝐿 ( 𝑠 = ( 𝐹𝑦 ) ∧ 𝑡 = ( 𝐹𝑧 ) ) → ∃ 𝑥𝐿 ( 𝑠𝑡 ) = ( 𝐹𝑥 ) ) )
22 imaeq2 ( 𝑥 = 𝑦 → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
23 22 eqeq2d ( 𝑥 = 𝑦 → ( 𝑠 = ( 𝐹𝑥 ) ↔ 𝑠 = ( 𝐹𝑦 ) ) )
24 23 cbvrexvw ( ∃ 𝑥𝐿 𝑠 = ( 𝐹𝑥 ) ↔ ∃ 𝑦𝐿 𝑠 = ( 𝐹𝑦 ) )
25 imaeq2 ( 𝑥 = 𝑧 → ( 𝐹𝑥 ) = ( 𝐹𝑧 ) )
26 25 eqeq2d ( 𝑥 = 𝑧 → ( 𝑡 = ( 𝐹𝑥 ) ↔ 𝑡 = ( 𝐹𝑧 ) ) )
27 26 cbvrexvw ( ∃ 𝑥𝐿 𝑡 = ( 𝐹𝑥 ) ↔ ∃ 𝑧𝐿 𝑡 = ( 𝐹𝑧 ) )
28 24 27 anbi12i ( ( ∃ 𝑥𝐿 𝑠 = ( 𝐹𝑥 ) ∧ ∃ 𝑥𝐿 𝑡 = ( 𝐹𝑥 ) ) ↔ ( ∃ 𝑦𝐿 𝑠 = ( 𝐹𝑦 ) ∧ ∃ 𝑧𝐿 𝑡 = ( 𝐹𝑧 ) ) )
29 eqid ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) = ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) )
30 29 elrnmpt ( 𝑠 ∈ V → ( 𝑠 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐿 𝑠 = ( 𝐹𝑥 ) ) )
31 30 elv ( 𝑠 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐿 𝑠 = ( 𝐹𝑥 ) )
32 29 elrnmpt ( 𝑡 ∈ V → ( 𝑡 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐿 𝑡 = ( 𝐹𝑥 ) ) )
33 32 elv ( 𝑡 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐿 𝑡 = ( 𝐹𝑥 ) )
34 31 33 anbi12i ( ( 𝑠 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∧ 𝑡 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ) ↔ ( ∃ 𝑥𝐿 𝑠 = ( 𝐹𝑥 ) ∧ ∃ 𝑥𝐿 𝑡 = ( 𝐹𝑥 ) ) )
35 reeanv ( ∃ 𝑦𝐿𝑧𝐿 ( 𝑠 = ( 𝐹𝑦 ) ∧ 𝑡 = ( 𝐹𝑧 ) ) ↔ ( ∃ 𝑦𝐿 𝑠 = ( 𝐹𝑦 ) ∧ ∃ 𝑧𝐿 𝑡 = ( 𝐹𝑧 ) ) )
36 28 34 35 3bitr4i ( ( 𝑠 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∧ 𝑡 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ) ↔ ∃ 𝑦𝐿𝑧𝐿 ( 𝑠 = ( 𝐹𝑦 ) ∧ 𝑡 = ( 𝐹𝑧 ) ) )
37 vex 𝑠 ∈ V
38 37 inex1 ( 𝑠𝑡 ) ∈ V
39 29 elrnmpt ( ( 𝑠𝑡 ) ∈ V → ( ( 𝑠𝑡 ) ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐿 ( 𝑠𝑡 ) = ( 𝐹𝑥 ) ) )
40 38 39 ax-mp ( ( 𝑠𝑡 ) ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ∃ 𝑥𝐿 ( 𝑠𝑡 ) = ( 𝐹𝑥 ) )
41 21 36 40 3imtr4g ( 𝜑 → ( ( 𝑠 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∧ 𝑡 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ) → ( 𝑠𝑡 ) ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ) )
42 41 ralrimivv ( 𝜑 → ∀ 𝑠 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∀ 𝑡 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ( 𝑠𝑡 ) ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) )
43 mptexg ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∈ V )
44 rnexg ( ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∈ V → ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∈ V )
45 inficl ( ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∈ V → ( ∀ 𝑠 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∀ 𝑡 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ( 𝑠𝑡 ) ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ( fi ‘ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ) = ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ) )
46 2 43 44 45 4syl ( 𝜑 → ( ∀ 𝑠 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ∀ 𝑡 ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ( 𝑠𝑡 ) ∈ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ↔ ( fi ‘ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ) = ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ) )
47 42 46 mpbid ( 𝜑 → ( fi ‘ ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) ) = ran ( 𝑥𝐿 ↦ ( 𝐹𝑥 ) ) )