Step |
Hyp |
Ref |
Expression |
1 |
|
fmfnfm.b |
⊢ ( 𝜑 → 𝐵 ∈ ( fBas ‘ 𝑌 ) ) |
2 |
|
fmfnfm.l |
⊢ ( 𝜑 → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) |
3 |
|
fmfnfm.f |
⊢ ( 𝜑 → 𝐹 : 𝑌 ⟶ 𝑋 ) |
4 |
|
fmfnfm.fm |
⊢ ( 𝜑 → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ 𝐿 ) |
5 |
|
filin |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿 ) → ( 𝑦 ∩ 𝑧 ) ∈ 𝐿 ) |
6 |
5
|
3expb |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿 ) ) → ( 𝑦 ∩ 𝑧 ) ∈ 𝐿 ) |
7 |
2 6
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿 ) ) → ( 𝑦 ∩ 𝑧 ) ∈ 𝐿 ) |
8 |
|
ffun |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → Fun 𝐹 ) |
9 |
|
funcnvcnv |
⊢ ( Fun 𝐹 → Fun ◡ ◡ 𝐹 ) |
10 |
|
imain |
⊢ ( Fun ◡ ◡ 𝐹 → ( ◡ 𝐹 “ ( 𝑦 ∩ 𝑧 ) ) = ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) ) |
11 |
10
|
eqcomd |
⊢ ( Fun ◡ ◡ 𝐹 → ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) = ( ◡ 𝐹 “ ( 𝑦 ∩ 𝑧 ) ) ) |
12 |
3 8 9 11
|
4syl |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) = ( ◡ 𝐹 “ ( 𝑦 ∩ 𝑧 ) ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿 ) ) → ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) = ( ◡ 𝐹 “ ( 𝑦 ∩ 𝑧 ) ) ) |
14 |
|
imaeq2 |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ ( 𝑦 ∩ 𝑧 ) ) ) |
15 |
14
|
rspceeqv |
⊢ ( ( ( 𝑦 ∩ 𝑧 ) ∈ 𝐿 ∧ ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) = ( ◡ 𝐹 “ ( 𝑦 ∩ 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝐿 ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
16 |
7 13 15
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿 ) ) → ∃ 𝑥 ∈ 𝐿 ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
17 |
|
ineq12 |
⊢ ( ( 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ∧ 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) → ( 𝑠 ∩ 𝑡 ) = ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) ) |
18 |
17
|
eqeq1d |
⊢ ( ( 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ∧ 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) → ( ( 𝑠 ∩ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ↔ ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
19 |
18
|
rexbidv |
⊢ ( ( 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ∧ 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) → ( ∃ 𝑥 ∈ 𝐿 ( 𝑠 ∩ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐿 ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑧 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
20 |
16 19
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐿 ∧ 𝑧 ∈ 𝐿 ) ) → ( ( 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ∧ 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐿 ( 𝑠 ∩ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
21 |
20
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐿 ∃ 𝑧 ∈ 𝐿 ( 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ∧ 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐿 ( 𝑠 ∩ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
22 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑦 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ 𝑦 ) ) |
23 |
22
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ↔ 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ) ) |
24 |
23
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ↔ ∃ 𝑦 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ) |
25 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑧 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ 𝑧 ) ) |
26 |
25
|
eqeq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑡 = ( ◡ 𝐹 “ 𝑥 ) ↔ 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) ) |
27 |
26
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑥 ) ↔ ∃ 𝑧 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) |
28 |
24 27
|
anbi12i |
⊢ ( ( ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ∧ ∃ 𝑥 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑥 ) ) ↔ ( ∃ 𝑦 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ∧ ∃ 𝑧 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) ) |
29 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) = ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) |
30 |
29
|
elrnmpt |
⊢ ( 𝑠 ∈ V → ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
31 |
30
|
elv |
⊢ ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ) |
32 |
29
|
elrnmpt |
⊢ ( 𝑡 ∈ V → ( 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
33 |
32
|
elv |
⊢ ( 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑥 ) ) |
34 |
31 33
|
anbi12i |
⊢ ( ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ∧ ∃ 𝑥 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
35 |
|
reeanv |
⊢ ( ∃ 𝑦 ∈ 𝐿 ∃ 𝑧 ∈ 𝐿 ( 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ∧ 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) ↔ ( ∃ 𝑦 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ∧ ∃ 𝑧 ∈ 𝐿 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) ) |
36 |
28 34 35
|
3bitr4i |
⊢ ( ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ↔ ∃ 𝑦 ∈ 𝐿 ∃ 𝑧 ∈ 𝐿 ( 𝑠 = ( ◡ 𝐹 “ 𝑦 ) ∧ 𝑡 = ( ◡ 𝐹 “ 𝑧 ) ) ) |
37 |
|
vex |
⊢ 𝑠 ∈ V |
38 |
37
|
inex1 |
⊢ ( 𝑠 ∩ 𝑡 ) ∈ V |
39 |
29
|
elrnmpt |
⊢ ( ( 𝑠 ∩ 𝑡 ) ∈ V → ( ( 𝑠 ∩ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ( 𝑠 ∩ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
40 |
38 39
|
ax-mp |
⊢ ( ( 𝑠 ∩ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ( 𝑠 ∩ 𝑡 ) = ( ◡ 𝐹 “ 𝑥 ) ) |
41 |
21 36 40
|
3imtr4g |
⊢ ( 𝜑 → ( ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) → ( 𝑠 ∩ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
42 |
41
|
ralrimivv |
⊢ ( 𝜑 → ∀ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∀ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝑠 ∩ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) |
43 |
|
mptexg |
⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ V ) |
44 |
|
rnexg |
⊢ ( ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ V → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ V ) |
45 |
|
inficl |
⊢ ( ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ V → ( ∀ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∀ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝑠 ∩ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) = ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
46 |
2 43 44 45
|
4syl |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∀ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ( 𝑠 ∩ 𝑡 ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) = ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
47 |
42 46
|
mpbid |
⊢ ( 𝜑 → ( fi ‘ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) = ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) |