| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmfnfm.b | ⊢ ( 𝜑  →  𝐵  ∈  ( fBas ‘ 𝑌 ) ) | 
						
							| 2 |  | fmfnfm.l | ⊢ ( 𝜑  →  𝐿  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 3 |  | fmfnfm.f | ⊢ ( 𝜑  →  𝐹 : 𝑌 ⟶ 𝑋 ) | 
						
							| 4 |  | fmfnfm.fm | ⊢ ( 𝜑  →  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  ⊆  𝐿 ) | 
						
							| 5 |  | filelss | ⊢ ( ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  𝑡  ∈  𝐿 )  →  𝑡  ⊆  𝑋 ) | 
						
							| 6 | 5 | ex | ⊢ ( 𝐿  ∈  ( Fil ‘ 𝑋 )  →  ( 𝑡  ∈  𝐿  →  𝑡  ⊆  𝑋 ) ) | 
						
							| 7 | 2 6 | syl | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝐿  →  𝑡  ⊆  𝑋 ) ) | 
						
							| 8 |  | mptexg | ⊢ ( 𝐿  ∈  ( Fil ‘ 𝑋 )  →  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∈  V ) | 
						
							| 9 |  | rnexg | ⊢ ( ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∈  V  →  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∈  V ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝐿  ∈  ( Fil ‘ 𝑋 )  →  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∈  V ) | 
						
							| 11 | 2 10 | syl | ⊢ ( 𝜑  →  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∈  V ) | 
						
							| 12 |  | unexg | ⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∈  V )  →  ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ∈  V ) | 
						
							| 13 | 1 11 12 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ∈  V ) | 
						
							| 14 |  | ssfii | ⊢ ( ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ∈  V  →  ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ⊆  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 15 | 14 | unssbd | ⊢ ( ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ∈  V  →  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ⊆  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 16 | 13 15 | syl | ⊢ ( 𝜑  →  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ⊆  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐿 )  →  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ⊆  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( ◡ 𝐹  “  𝑡 )  =  ( ◡ 𝐹  “  𝑡 ) | 
						
							| 19 |  | imaeq2 | ⊢ ( 𝑥  =  𝑡  →  ( ◡ 𝐹  “  𝑥 )  =  ( ◡ 𝐹  “  𝑡 ) ) | 
						
							| 20 | 19 | rspceeqv | ⊢ ( ( 𝑡  ∈  𝐿  ∧  ( ◡ 𝐹  “  𝑡 )  =  ( ◡ 𝐹  “  𝑡 ) )  →  ∃ 𝑥  ∈  𝐿 ( ◡ 𝐹  “  𝑡 )  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 21 | 18 20 | mpan2 | ⊢ ( 𝑡  ∈  𝐿  →  ∃ 𝑥  ∈  𝐿 ( ◡ 𝐹  “  𝑡 )  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐿 )  →  ∃ 𝑥  ∈  𝐿 ( ◡ 𝐹  “  𝑡 )  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 23 |  | elfvdm | ⊢ ( 𝐵  ∈  ( fBas ‘ 𝑌 )  →  𝑌  ∈  dom  fBas ) | 
						
							| 24 | 1 23 | syl | ⊢ ( 𝜑  →  𝑌  ∈  dom  fBas ) | 
						
							| 25 |  | cnvimass | ⊢ ( ◡ 𝐹  “  𝑡 )  ⊆  dom  𝐹 | 
						
							| 26 | 25 3 | fssdm | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  𝑡 )  ⊆  𝑌 ) | 
						
							| 27 | 24 26 | ssexd | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  𝑡 )  ∈  V ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐿 )  →  ( ◡ 𝐹  “  𝑡 )  ∈  V ) | 
						
							| 29 |  | eqid | ⊢ ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  =  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 30 | 29 | elrnmpt | ⊢ ( ( ◡ 𝐹  “  𝑡 )  ∈  V  →  ( ( ◡ 𝐹  “  𝑡 )  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 ( ◡ 𝐹  “  𝑡 )  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 31 | 28 30 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐿 )  →  ( ( ◡ 𝐹  “  𝑡 )  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 ( ◡ 𝐹  “  𝑡 )  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 32 | 22 31 | mpbird | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐿 )  →  ( ◡ 𝐹  “  𝑡 )  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 33 | 17 32 | sseldd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐿 )  →  ( ◡ 𝐹  “  𝑡 )  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 34 |  | ffun | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  Fun  𝐹 ) | 
						
							| 35 |  | ssid | ⊢ ( ◡ 𝐹  “  𝑡 )  ⊆  ( ◡ 𝐹  “  𝑡 ) | 
						
							| 36 |  | funimass2 | ⊢ ( ( Fun  𝐹  ∧  ( ◡ 𝐹  “  𝑡 )  ⊆  ( ◡ 𝐹  “  𝑡 ) )  →  ( 𝐹  “  ( ◡ 𝐹  “  𝑡 ) )  ⊆  𝑡 ) | 
						
							| 37 | 34 35 36 | sylancl | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( 𝐹  “  ( ◡ 𝐹  “  𝑡 ) )  ⊆  𝑡 ) | 
						
							| 38 | 3 37 | syl | ⊢ ( 𝜑  →  ( 𝐹  “  ( ◡ 𝐹  “  𝑡 ) )  ⊆  𝑡 ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐿 )  →  ( 𝐹  “  ( ◡ 𝐹  “  𝑡 ) )  ⊆  𝑡 ) | 
						
							| 40 |  | imaeq2 | ⊢ ( 𝑠  =  ( ◡ 𝐹  “  𝑡 )  →  ( 𝐹  “  𝑠 )  =  ( 𝐹  “  ( ◡ 𝐹  “  𝑡 ) ) ) | 
						
							| 41 | 40 | sseq1d | ⊢ ( 𝑠  =  ( ◡ 𝐹  “  𝑡 )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  ↔  ( 𝐹  “  ( ◡ 𝐹  “  𝑡 ) )  ⊆  𝑡 ) ) | 
						
							| 42 | 41 | rspcev | ⊢ ( ( ( ◡ 𝐹  “  𝑡 )  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) )  ∧  ( 𝐹  “  ( ◡ 𝐹  “  𝑡 ) )  ⊆  𝑡 )  →  ∃ 𝑠  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ( 𝐹  “  𝑠 )  ⊆  𝑡 ) | 
						
							| 43 | 33 39 42 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐿 )  →  ∃ 𝑠  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ( 𝐹  “  𝑠 )  ⊆  𝑡 ) | 
						
							| 44 | 43 | ex | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝐿  →  ∃ 𝑠  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ( 𝐹  “  𝑠 )  ⊆  𝑡 ) ) | 
						
							| 45 | 7 44 | jcad | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝐿  →  ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑠  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ( 𝐹  “  𝑠 )  ⊆  𝑡 ) ) ) | 
						
							| 46 |  | elfiun | ⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ∈  V )  →  ( 𝑠  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) )  ↔  ( 𝑠  ∈  ( fi ‘ 𝐵 )  ∨  𝑠  ∈  ( fi ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ∨  ∃ 𝑧  ∈  ( fi ‘ 𝐵 ) ∃ 𝑤  ∈  ( fi ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) 𝑠  =  ( 𝑧  ∩  𝑤 ) ) ) ) | 
						
							| 47 | 1 11 46 | syl2anc | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) )  ↔  ( 𝑠  ∈  ( fi ‘ 𝐵 )  ∨  𝑠  ∈  ( fi ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ∨  ∃ 𝑧  ∈  ( fi ‘ 𝐵 ) ∃ 𝑤  ∈  ( fi ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) 𝑠  =  ( 𝑧  ∩  𝑤 ) ) ) ) | 
						
							| 48 | 1 2 3 4 | fmfnfmlem1 | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( fi ‘ 𝐵 )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) | 
						
							| 49 | 1 2 3 4 | fmfnfmlem3 | ⊢ ( 𝜑  →  ( fi ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  =  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 50 | 49 | eleq2d | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( fi ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ↔  𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 51 | 29 | elrnmpt | ⊢ ( 𝑠  ∈  V  →  ( 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 𝑠  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 52 | 51 | elv | ⊢ ( 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 𝑠  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 53 | 1 2 3 4 | fmfnfmlem2 | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐿 𝑠  =  ( ◡ 𝐹  “  𝑥 )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) | 
						
							| 54 | 52 53 | biimtrid | ⊢ ( 𝜑  →  ( 𝑠  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) | 
						
							| 55 | 50 54 | sylbid | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( fi ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) | 
						
							| 56 | 49 | eleq2d | ⊢ ( 𝜑  →  ( 𝑤  ∈  ( fi ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ↔  𝑤  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 57 | 29 | elrnmpt | ⊢ ( 𝑤  ∈  V  →  ( 𝑤  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 𝑤  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 58 | 57 | elv | ⊢ ( 𝑤  ∈  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) )  ↔  ∃ 𝑥  ∈  𝐿 𝑤  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 59 | 56 58 | bitrdi | ⊢ ( 𝜑  →  ( 𝑤  ∈  ( fi ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ↔  ∃ 𝑥  ∈  𝐿 𝑤  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( fi ‘ 𝐵 ) )  →  ( 𝑤  ∈  ( fi ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ↔  ∃ 𝑥  ∈  𝐿 𝑤  =  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 61 |  | fbssfi | ⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝑧  ∈  ( fi ‘ 𝐵 ) )  →  ∃ 𝑠  ∈  𝐵 𝑠  ⊆  𝑧 ) | 
						
							| 62 | 1 61 | sylan | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( fi ‘ 𝐵 ) )  →  ∃ 𝑠  ∈  𝐵 𝑠  ⊆  𝑧 ) | 
						
							| 63 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  𝐿  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 64 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  →  𝐿  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 65 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  ⊆  𝐿 ) | 
						
							| 66 |  | filtop | ⊢ ( 𝐿  ∈  ( Fil ‘ 𝑋 )  →  𝑋  ∈  𝐿 ) | 
						
							| 67 | 2 66 | syl | ⊢ ( 𝜑  →  𝑋  ∈  𝐿 ) | 
						
							| 68 | 67 1 3 | 3jca | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝐿  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 ) ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  ( 𝑋  ∈  𝐿  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 ) ) | 
						
							| 70 |  | ssfg | ⊢ ( 𝐵  ∈  ( fBas ‘ 𝑌 )  →  𝐵  ⊆  ( 𝑌 filGen 𝐵 ) ) | 
						
							| 71 | 1 70 | syl | ⊢ ( 𝜑  →  𝐵  ⊆  ( 𝑌 filGen 𝐵 ) ) | 
						
							| 72 | 71 | sselda | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  𝑠  ∈  ( 𝑌 filGen 𝐵 ) ) | 
						
							| 73 |  | eqid | ⊢ ( 𝑌 filGen 𝐵 )  =  ( 𝑌 filGen 𝐵 ) | 
						
							| 74 | 73 | imaelfm | ⊢ ( ( ( 𝑋  ∈  𝐿  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  𝑠  ∈  ( 𝑌 filGen 𝐵 ) )  →  ( 𝐹  “  𝑠 )  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 ) ) | 
						
							| 75 | 69 72 74 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  ( 𝐹  “  𝑠 )  ∈  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 ) ) | 
						
							| 76 | 65 75 | sseldd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  ( 𝐹  “  𝑠 )  ∈  𝐿 ) | 
						
							| 77 | 76 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  →  ( 𝐹  “  𝑠 )  ∈  𝐿 ) | 
						
							| 78 | 64 77 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  →  ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐹  “  𝑠 )  ∈  𝐿 ) ) | 
						
							| 79 |  | filin | ⊢ ( ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐹  “  𝑠 )  ∈  𝐿  ∧  𝑥  ∈  𝐿 )  →  ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  ∈  𝐿 ) | 
						
							| 80 | 79 | 3expa | ⊢ ( ( ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝐹  “  𝑠 )  ∈  𝐿 )  ∧  𝑥  ∈  𝐿 )  →  ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  ∈  𝐿 ) | 
						
							| 81 | 78 80 | sylan | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  →  ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  ∈  𝐿 ) | 
						
							| 82 | 81 | adantr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  ∈  𝐿 ) | 
						
							| 83 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  𝑡  ⊆  𝑋 ) | 
						
							| 84 |  | elin | ⊢ ( 𝑤  ∈  ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  ↔  ( 𝑤  ∈  ( 𝐹  “  𝑠 )  ∧  𝑤  ∈  𝑥 ) ) | 
						
							| 85 | 3 34 | syl | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 86 |  | fvelima | ⊢ ( ( Fun  𝐹  ∧  𝑤  ∈  ( 𝐹  “  𝑠 ) )  →  ∃ 𝑦  ∈  𝑠 ( 𝐹 ‘ 𝑦 )  =  𝑤 ) | 
						
							| 87 | 86 | ex | ⊢ ( Fun  𝐹  →  ( 𝑤  ∈  ( 𝐹  “  𝑠 )  →  ∃ 𝑦  ∈  𝑠 ( 𝐹 ‘ 𝑦 )  =  𝑤 ) ) | 
						
							| 88 | 85 87 | syl | ⊢ ( 𝜑  →  ( 𝑤  ∈  ( 𝐹  “  𝑠 )  →  ∃ 𝑦  ∈  𝑠 ( 𝐹 ‘ 𝑦 )  =  𝑤 ) ) | 
						
							| 89 | 88 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  𝑡  ⊆  𝑋 )  →  ( 𝑤  ∈  ( 𝐹  “  𝑠 )  →  ∃ 𝑦  ∈  𝑠 ( 𝐹 ‘ 𝑦 )  =  𝑤 ) ) | 
						
							| 90 | 85 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  ( 𝑡  ⊆  𝑋  ∧  ( 𝑦  ∈  𝑠  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑥 ) ) )  →  Fun  𝐹 ) | 
						
							| 91 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  →  𝑠  ⊆  𝑧 ) | 
						
							| 92 |  | simprl | ⊢ ( ( 𝑡  ⊆  𝑋  ∧  ( 𝑦  ∈  𝑠  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑥 ) )  →  𝑦  ∈  𝑠 ) | 
						
							| 93 |  | ssel2 | ⊢ ( ( 𝑠  ⊆  𝑧  ∧  𝑦  ∈  𝑠 )  →  𝑦  ∈  𝑧 ) | 
						
							| 94 | 91 92 93 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  ( 𝑡  ⊆  𝑋  ∧  ( 𝑦  ∈  𝑠  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑥 ) ) )  →  𝑦  ∈  𝑧 ) | 
						
							| 95 | 85 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑦  ∈  𝑠 )  →  Fun  𝐹 ) | 
						
							| 96 |  | fbelss | ⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝑠  ∈  𝐵 )  →  𝑠  ⊆  𝑌 ) | 
						
							| 97 | 1 96 | sylan | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  𝑠  ⊆  𝑌 ) | 
						
							| 98 | 3 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝑌 ) | 
						
							| 99 | 98 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  dom  𝐹  =  𝑌 ) | 
						
							| 100 | 97 99 | sseqtrrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐵 )  →  𝑠  ⊆  dom  𝐹 ) | 
						
							| 101 | 100 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  →  𝑠  ⊆  dom  𝐹 ) | 
						
							| 102 | 101 | sselda | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑦  ∈  𝑠 )  →  𝑦  ∈  dom  𝐹 ) | 
						
							| 103 |  | fvimacnv | ⊢ ( ( Fun  𝐹  ∧  𝑦  ∈  dom  𝐹 )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  𝑥  ↔  𝑦  ∈  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 104 | 95 102 103 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑦  ∈  𝑠 )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  𝑥  ↔  𝑦  ∈  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 105 | 104 | biimpd | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑦  ∈  𝑠 )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  𝑥  →  𝑦  ∈  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 106 | 105 | impr | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  ( 𝑦  ∈  𝑠  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑥 ) )  →  𝑦  ∈  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 107 | 106 | ad2ant2rl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  ( 𝑡  ⊆  𝑋  ∧  ( 𝑦  ∈  𝑠  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑥 ) ) )  →  𝑦  ∈  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 108 | 94 107 | elind | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  ( 𝑡  ⊆  𝑋  ∧  ( 𝑦  ∈  𝑠  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑥 ) ) )  →  𝑦  ∈  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 109 |  | inss2 | ⊢ ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) )  ⊆  ( ◡ 𝐹  “  𝑥 ) | 
						
							| 110 |  | cnvimass | ⊢ ( ◡ 𝐹  “  𝑥 )  ⊆  dom  𝐹 | 
						
							| 111 | 109 110 | sstri | ⊢ ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) )  ⊆  dom  𝐹 | 
						
							| 112 |  | funfvima2 | ⊢ ( ( Fun  𝐹  ∧  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) )  ⊆  dom  𝐹 )  →  ( 𝑦  ∈  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 113 | 111 112 | mpan2 | ⊢ ( Fun  𝐹  →  ( 𝑦  ∈  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 114 | 90 108 113 | sylc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  ( 𝑡  ⊆  𝑋  ∧  ( 𝑦  ∈  𝑠  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑥 ) ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 115 | 114 | anassrs | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  𝑡  ⊆  𝑋 )  ∧  ( 𝑦  ∈  𝑠  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑥 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 116 | 115 | expr | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  𝑡  ⊆  𝑋 )  ∧  𝑦  ∈  𝑠 )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  𝑥  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 117 |  | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑦 )  =  𝑤  →  ( ( 𝐹 ‘ 𝑦 )  ∈  𝑥  ↔  𝑤  ∈  𝑥 ) ) | 
						
							| 118 |  | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑦 )  =  𝑤  →  ( ( 𝐹 ‘ 𝑦 )  ∈  ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) )  ↔  𝑤  ∈  ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 119 | 117 118 | imbi12d | ⊢ ( ( 𝐹 ‘ 𝑦 )  =  𝑤  →  ( ( ( 𝐹 ‘ 𝑦 )  ∈  𝑥  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) ) )  ↔  ( 𝑤  ∈  𝑥  →  𝑤  ∈  ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) ) | 
						
							| 120 | 116 119 | syl5ibcom | ⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  𝑡  ⊆  𝑋 )  ∧  𝑦  ∈  𝑠 )  →  ( ( 𝐹 ‘ 𝑦 )  =  𝑤  →  ( 𝑤  ∈  𝑥  →  𝑤  ∈  ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) ) | 
						
							| 121 | 120 | rexlimdva | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  𝑡  ⊆  𝑋 )  →  ( ∃ 𝑦  ∈  𝑠 ( 𝐹 ‘ 𝑦 )  =  𝑤  →  ( 𝑤  ∈  𝑥  →  𝑤  ∈  ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) ) | 
						
							| 122 | 89 121 | syld | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  𝑡  ⊆  𝑋 )  →  ( 𝑤  ∈  ( 𝐹  “  𝑠 )  →  ( 𝑤  ∈  𝑥  →  𝑤  ∈  ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) ) | 
						
							| 123 | 122 | impd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  𝑡  ⊆  𝑋 )  →  ( ( 𝑤  ∈  ( 𝐹  “  𝑠 )  ∧  𝑤  ∈  𝑥 )  →  𝑤  ∈  ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 124 | 84 123 | biimtrid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  𝑡  ⊆  𝑋 )  →  ( 𝑤  ∈  ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  →  𝑤  ∈  ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 125 | 124 | adantrl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( 𝑤  ∈  ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  →  𝑤  ∈  ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 126 | 125 | ssrdv | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  ⊆  ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 127 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) )  ⊆  𝑡 ) | 
						
							| 128 | 126 127 | sstrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  ⊆  𝑡 ) | 
						
							| 129 |  | filss | ⊢ ( ( 𝐿  ∈  ( Fil ‘ 𝑋 )  ∧  ( ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  ∈  𝐿  ∧  𝑡  ⊆  𝑋  ∧  ( ( 𝐹  “  𝑠 )  ∩  𝑥 )  ⊆  𝑡 ) )  →  𝑡  ∈  𝐿 ) | 
						
							| 130 | 63 82 83 128 129 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  ∧  ( ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) )  ⊆  𝑡  ∧  𝑡  ⊆  𝑋 ) )  →  𝑡  ∈  𝐿 ) | 
						
							| 131 | 130 | exp32 | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  →  ( ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) | 
						
							| 132 |  | ineq2 | ⊢ ( 𝑤  =  ( ◡ 𝐹  “  𝑥 )  →  ( 𝑧  ∩  𝑤 )  =  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 133 | 132 | imaeq2d | ⊢ ( 𝑤  =  ( ◡ 𝐹  “  𝑥 )  →  ( 𝐹  “  ( 𝑧  ∩  𝑤 ) )  =  ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) ) ) | 
						
							| 134 | 133 | sseq1d | ⊢ ( 𝑤  =  ( ◡ 𝐹  “  𝑥 )  →  ( ( 𝐹  “  ( 𝑧  ∩  𝑤 ) )  ⊆  𝑡  ↔  ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) )  ⊆  𝑡 ) ) | 
						
							| 135 | 134 | imbi1d | ⊢ ( 𝑤  =  ( ◡ 𝐹  “  𝑥 )  →  ( ( ( 𝐹  “  ( 𝑧  ∩  𝑤 ) )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) )  ↔  ( ( 𝐹  “  ( 𝑧  ∩  ( ◡ 𝐹  “  𝑥 ) ) )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) | 
						
							| 136 | 131 135 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  ∧  𝑥  ∈  𝐿 )  →  ( 𝑤  =  ( ◡ 𝐹  “  𝑥 )  →  ( ( 𝐹  “  ( 𝑧  ∩  𝑤 ) )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) | 
						
							| 137 | 136 | rexlimdva | ⊢ ( ( 𝜑  ∧  ( 𝑠  ∈  𝐵  ∧  𝑠  ⊆  𝑧 ) )  →  ( ∃ 𝑥  ∈  𝐿 𝑤  =  ( ◡ 𝐹  “  𝑥 )  →  ( ( 𝐹  “  ( 𝑧  ∩  𝑤 ) )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) | 
						
							| 138 | 137 | rexlimdvaa | ⊢ ( 𝜑  →  ( ∃ 𝑠  ∈  𝐵 𝑠  ⊆  𝑧  →  ( ∃ 𝑥  ∈  𝐿 𝑤  =  ( ◡ 𝐹  “  𝑥 )  →  ( ( 𝐹  “  ( 𝑧  ∩  𝑤 ) )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) ) | 
						
							| 139 | 138 | imp | ⊢ ( ( 𝜑  ∧  ∃ 𝑠  ∈  𝐵 𝑠  ⊆  𝑧 )  →  ( ∃ 𝑥  ∈  𝐿 𝑤  =  ( ◡ 𝐹  “  𝑥 )  →  ( ( 𝐹  “  ( 𝑧  ∩  𝑤 ) )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) | 
						
							| 140 | 62 139 | syldan | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( fi ‘ 𝐵 ) )  →  ( ∃ 𝑥  ∈  𝐿 𝑤  =  ( ◡ 𝐹  “  𝑥 )  →  ( ( 𝐹  “  ( 𝑧  ∩  𝑤 ) )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) | 
						
							| 141 | 60 140 | sylbid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( fi ‘ 𝐵 ) )  →  ( 𝑤  ∈  ( fi ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  →  ( ( 𝐹  “  ( 𝑧  ∩  𝑤 ) )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) | 
						
							| 142 | 141 | impr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ( fi ‘ 𝐵 )  ∧  𝑤  ∈  ( fi ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) )  →  ( ( 𝐹  “  ( 𝑧  ∩  𝑤 ) )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) | 
						
							| 143 |  | imaeq2 | ⊢ ( 𝑠  =  ( 𝑧  ∩  𝑤 )  →  ( 𝐹  “  𝑠 )  =  ( 𝐹  “  ( 𝑧  ∩  𝑤 ) ) ) | 
						
							| 144 | 143 | sseq1d | ⊢ ( 𝑠  =  ( 𝑧  ∩  𝑤 )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  ↔  ( 𝐹  “  ( 𝑧  ∩  𝑤 ) )  ⊆  𝑡 ) ) | 
						
							| 145 | 144 | imbi1d | ⊢ ( 𝑠  =  ( 𝑧  ∩  𝑤 )  →  ( ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) )  ↔  ( ( 𝐹  “  ( 𝑧  ∩  𝑤 ) )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) | 
						
							| 146 | 142 145 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ( fi ‘ 𝐵 )  ∧  𝑤  ∈  ( fi ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) )  →  ( 𝑠  =  ( 𝑧  ∩  𝑤 )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) | 
						
							| 147 | 146 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑧  ∈  ( fi ‘ 𝐵 ) ∃ 𝑤  ∈  ( fi ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) 𝑠  =  ( 𝑧  ∩  𝑤 )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) | 
						
							| 148 | 48 55 147 | 3jaod | ⊢ ( 𝜑  →  ( ( 𝑠  ∈  ( fi ‘ 𝐵 )  ∨  𝑠  ∈  ( fi ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) )  ∨  ∃ 𝑧  ∈  ( fi ‘ 𝐵 ) ∃ 𝑤  ∈  ( fi ‘ ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) 𝑠  =  ( 𝑧  ∩  𝑤 ) )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) | 
						
							| 149 | 47 148 | sylbid | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) )  →  ( ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) ) | 
						
							| 150 | 149 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑠  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ( 𝐹  “  𝑠 )  ⊆  𝑡  →  ( 𝑡  ⊆  𝑋  →  𝑡  ∈  𝐿 ) ) ) | 
						
							| 151 | 150 | impcomd | ⊢ ( 𝜑  →  ( ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑠  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ( 𝐹  “  𝑠 )  ⊆  𝑡 )  →  𝑡  ∈  𝐿 ) ) | 
						
							| 152 | 45 151 | impbid | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝐿  ↔  ( 𝑡  ⊆  𝑋  ∧  ∃ 𝑠  ∈  ( fi ‘ ( 𝐵  ∪  ran  ( 𝑥  ∈  𝐿  ↦  ( ◡ 𝐹  “  𝑥 ) ) ) ) ( 𝐹  “  𝑠 )  ⊆  𝑡 ) ) ) |