Step |
Hyp |
Ref |
Expression |
1 |
|
filfbas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
2 |
|
f1oi |
⊢ ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 |
3 |
|
f1ofo |
⊢ ( ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 → ( I ↾ 𝑋 ) : 𝑋 –onto→ 𝑋 ) |
4 |
2 3
|
ax-mp |
⊢ ( I ↾ 𝑋 ) : 𝑋 –onto→ 𝑋 |
5 |
|
eqid |
⊢ ( 𝑋 filGen 𝐹 ) = ( 𝑋 filGen 𝐹 ) |
6 |
5
|
elfm3 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ( I ↾ 𝑋 ) : 𝑋 –onto→ 𝑋 ) → ( 𝑡 ∈ ( ( 𝑋 FilMap ( I ↾ 𝑋 ) ) ‘ 𝐹 ) ↔ ∃ 𝑠 ∈ ( 𝑋 filGen 𝐹 ) 𝑡 = ( ( I ↾ 𝑋 ) “ 𝑠 ) ) ) |
7 |
1 4 6
|
sylancl |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑡 ∈ ( ( 𝑋 FilMap ( I ↾ 𝑋 ) ) ‘ 𝐹 ) ↔ ∃ 𝑠 ∈ ( 𝑋 filGen 𝐹 ) 𝑡 = ( ( I ↾ 𝑋 ) “ 𝑠 ) ) ) |
8 |
|
fgfil |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) = 𝐹 ) |
9 |
8
|
rexeqdv |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃ 𝑠 ∈ ( 𝑋 filGen 𝐹 ) 𝑡 = ( ( I ↾ 𝑋 ) “ 𝑠 ) ↔ ∃ 𝑠 ∈ 𝐹 𝑡 = ( ( I ↾ 𝑋 ) “ 𝑠 ) ) ) |
10 |
|
filelss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐹 ) → 𝑠 ⊆ 𝑋 ) |
11 |
|
resiima |
⊢ ( 𝑠 ⊆ 𝑋 → ( ( I ↾ 𝑋 ) “ 𝑠 ) = 𝑠 ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐹 ) → ( ( I ↾ 𝑋 ) “ 𝑠 ) = 𝑠 ) |
13 |
12
|
eqeq2d |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐹 ) → ( 𝑡 = ( ( I ↾ 𝑋 ) “ 𝑠 ) ↔ 𝑡 = 𝑠 ) ) |
14 |
|
equcom |
⊢ ( 𝑠 = 𝑡 ↔ 𝑡 = 𝑠 ) |
15 |
13 14
|
bitr4di |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐹 ) → ( 𝑡 = ( ( I ↾ 𝑋 ) “ 𝑠 ) ↔ 𝑠 = 𝑡 ) ) |
16 |
15
|
rexbidva |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃ 𝑠 ∈ 𝐹 𝑡 = ( ( I ↾ 𝑋 ) “ 𝑠 ) ↔ ∃ 𝑠 ∈ 𝐹 𝑠 = 𝑡 ) ) |
17 |
|
risset |
⊢ ( 𝑡 ∈ 𝐹 ↔ ∃ 𝑠 ∈ 𝐹 𝑠 = 𝑡 ) |
18 |
16 17
|
bitr4di |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃ 𝑠 ∈ 𝐹 𝑡 = ( ( I ↾ 𝑋 ) “ 𝑠 ) ↔ 𝑡 ∈ 𝐹 ) ) |
19 |
7 9 18
|
3bitrd |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑡 ∈ ( ( 𝑋 FilMap ( I ↾ 𝑋 ) ) ‘ 𝐹 ) ↔ 𝑡 ∈ 𝐹 ) ) |
20 |
19
|
eqrdv |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑋 FilMap ( I ↾ 𝑋 ) ) ‘ 𝐹 ) = 𝐹 ) |