Metamath Proof Explorer


Theorem fmla

Description: The set of all valid Godel formulas. (Contributed by AV, 20-Sep-2023)

Ref Expression
Assertion fmla ( Fmla ‘ ω ) = 𝑛 ∈ ω ( Fmla ‘ 𝑛 )

Proof

Step Hyp Ref Expression
1 df-fmla Fmla = ( 𝑛 ∈ suc ω ↦ dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) )
2 1 fveq1i ( Fmla ‘ ω ) = ( ( 𝑛 ∈ suc ω ↦ dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) ) ‘ ω )
3 omex ω ∈ V
4 eqidd ( ω ∈ V → ( 𝑛 ∈ suc ω ↦ dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) ) = ( 𝑛 ∈ suc ω ↦ dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) ) )
5 fveq2 ( 𝑛 = ω → ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = ( ( ∅ Sat ∅ ) ‘ ω ) )
6 5 dmeqd ( 𝑛 = ω → dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = dom ( ( ∅ Sat ∅ ) ‘ ω ) )
7 6 adantl ( ( ω ∈ V ∧ 𝑛 = ω ) → dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = dom ( ( ∅ Sat ∅ ) ‘ ω ) )
8 sucidg ( ω ∈ V → ω ∈ suc ω )
9 fvex ( ( ∅ Sat ∅ ) ‘ ω ) ∈ V
10 9 dmex dom ( ( ∅ Sat ∅ ) ‘ ω ) ∈ V
11 10 a1i ( ω ∈ V → dom ( ( ∅ Sat ∅ ) ‘ ω ) ∈ V )
12 4 7 8 11 fvmptd ( ω ∈ V → ( ( 𝑛 ∈ suc ω ↦ dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) ) ‘ ω ) = dom ( ( ∅ Sat ∅ ) ‘ ω ) )
13 3 12 ax-mp ( ( 𝑛 ∈ suc ω ↦ dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) ) ‘ ω ) = dom ( ( ∅ Sat ∅ ) ‘ ω )
14 3 sucid ω ∈ suc ω
15 satf0sucom ( ω ∈ suc ω → ( ( ∅ Sat ∅ ) ‘ ω ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ ω ) )
16 14 15 ax-mp ( ( ∅ Sat ∅ ) ‘ ω ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ ω )
17 limom Lim ω
18 rdglim2a ( ( ω ∈ V ∧ Lim ω ) → ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ ω ) = 𝑛 ∈ ω ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑛 ) )
19 3 17 18 mp2an ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ ω ) = 𝑛 ∈ ω ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑛 )
20 16 19 eqtri ( ( ∅ Sat ∅ ) ‘ ω ) = 𝑛 ∈ ω ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑛 )
21 20 dmeqi dom ( ( ∅ Sat ∅ ) ‘ ω ) = dom 𝑛 ∈ ω ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑛 )
22 dmiun dom 𝑛 ∈ ω ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑛 ) = 𝑛 ∈ ω dom ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑛 )
23 elelsuc ( 𝑛 ∈ ω → 𝑛 ∈ suc ω )
24 fmlafv ( 𝑛 ∈ suc ω → ( Fmla ‘ 𝑛 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) )
25 23 24 syl ( 𝑛 ∈ ω → ( Fmla ‘ 𝑛 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) )
26 satf0sucom ( 𝑛 ∈ suc ω → ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑛 ) )
27 23 26 syl ( 𝑛 ∈ ω → ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑛 ) )
28 27 dmeqd ( 𝑛 ∈ ω → dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = dom ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑛 ) )
29 25 28 eqtr2d ( 𝑛 ∈ ω → dom ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑛 ) = ( Fmla ‘ 𝑛 ) )
30 29 iuneq2i 𝑛 ∈ ω dom ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑛 ) = 𝑛 ∈ ω ( Fmla ‘ 𝑛 )
31 21 22 30 3eqtri dom ( ( ∅ Sat ∅ ) ‘ ω ) = 𝑛 ∈ ω ( Fmla ‘ 𝑛 )
32 2 13 31 3eqtri ( Fmla ‘ ω ) = 𝑛 ∈ ω ( Fmla ‘ 𝑛 )