Step |
Hyp |
Ref |
Expression |
1 |
|
df-fmla |
⊢ Fmla = ( 𝑛 ∈ suc ω ↦ dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) ) |
2 |
1
|
fveq1i |
⊢ ( Fmla ‘ ω ) = ( ( 𝑛 ∈ suc ω ↦ dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) ) ‘ ω ) |
3 |
|
omex |
⊢ ω ∈ V |
4 |
|
eqidd |
⊢ ( ω ∈ V → ( 𝑛 ∈ suc ω ↦ dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) ) = ( 𝑛 ∈ suc ω ↦ dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝑛 = ω → ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = ( ( ∅ Sat ∅ ) ‘ ω ) ) |
6 |
5
|
dmeqd |
⊢ ( 𝑛 = ω → dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = dom ( ( ∅ Sat ∅ ) ‘ ω ) ) |
7 |
6
|
adantl |
⊢ ( ( ω ∈ V ∧ 𝑛 = ω ) → dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = dom ( ( ∅ Sat ∅ ) ‘ ω ) ) |
8 |
|
sucidg |
⊢ ( ω ∈ V → ω ∈ suc ω ) |
9 |
|
fvex |
⊢ ( ( ∅ Sat ∅ ) ‘ ω ) ∈ V |
10 |
9
|
dmex |
⊢ dom ( ( ∅ Sat ∅ ) ‘ ω ) ∈ V |
11 |
10
|
a1i |
⊢ ( ω ∈ V → dom ( ( ∅ Sat ∅ ) ‘ ω ) ∈ V ) |
12 |
4 7 8 11
|
fvmptd |
⊢ ( ω ∈ V → ( ( 𝑛 ∈ suc ω ↦ dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) ) ‘ ω ) = dom ( ( ∅ Sat ∅ ) ‘ ω ) ) |
13 |
3 12
|
ax-mp |
⊢ ( ( 𝑛 ∈ suc ω ↦ dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) ) ‘ ω ) = dom ( ( ∅ Sat ∅ ) ‘ ω ) |
14 |
3
|
sucid |
⊢ ω ∈ suc ω |
15 |
|
satf0sucom |
⊢ ( ω ∈ suc ω → ( ( ∅ Sat ∅ ) ‘ ω ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ ω ) ) |
16 |
14 15
|
ax-mp |
⊢ ( ( ∅ Sat ∅ ) ‘ ω ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ ω ) |
17 |
|
limom |
⊢ Lim ω |
18 |
|
rdglim2a |
⊢ ( ( ω ∈ V ∧ Lim ω ) → ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ ω ) = ∪ 𝑛 ∈ ω ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑛 ) ) |
19 |
3 17 18
|
mp2an |
⊢ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ ω ) = ∪ 𝑛 ∈ ω ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑛 ) |
20 |
16 19
|
eqtri |
⊢ ( ( ∅ Sat ∅ ) ‘ ω ) = ∪ 𝑛 ∈ ω ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑛 ) |
21 |
20
|
dmeqi |
⊢ dom ( ( ∅ Sat ∅ ) ‘ ω ) = dom ∪ 𝑛 ∈ ω ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑛 ) |
22 |
|
dmiun |
⊢ dom ∪ 𝑛 ∈ ω ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑛 ) = ∪ 𝑛 ∈ ω dom ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑛 ) |
23 |
|
elelsuc |
⊢ ( 𝑛 ∈ ω → 𝑛 ∈ suc ω ) |
24 |
|
fmlafv |
⊢ ( 𝑛 ∈ suc ω → ( Fmla ‘ 𝑛 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) ) |
25 |
23 24
|
syl |
⊢ ( 𝑛 ∈ ω → ( Fmla ‘ 𝑛 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) ) |
26 |
|
satf0sucom |
⊢ ( 𝑛 ∈ suc ω → ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑛 ) ) |
27 |
23 26
|
syl |
⊢ ( 𝑛 ∈ ω → ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑛 ) ) |
28 |
27
|
dmeqd |
⊢ ( 𝑛 ∈ ω → dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = dom ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑛 ) ) |
29 |
25 28
|
eqtr2d |
⊢ ( 𝑛 ∈ ω → dom ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑛 ) = ( Fmla ‘ 𝑛 ) ) |
30 |
29
|
iuneq2i |
⊢ ∪ 𝑛 ∈ ω dom ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑛 ) = ∪ 𝑛 ∈ ω ( Fmla ‘ 𝑛 ) |
31 |
21 22 30
|
3eqtri |
⊢ dom ( ( ∅ Sat ∅ ) ‘ ω ) = ∪ 𝑛 ∈ ω ( Fmla ‘ 𝑛 ) |
32 |
2 13 31
|
3eqtri |
⊢ ( Fmla ‘ ω ) = ∪ 𝑛 ∈ ω ( Fmla ‘ 𝑛 ) |