Step |
Hyp |
Ref |
Expression |
1 |
|
df-fmla |
⊢ Fmla = ( 𝑛 ∈ suc ω ↦ dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) ) |
2 |
1
|
a1i |
⊢ ( 𝑁 ∈ suc ω → Fmla = ( 𝑛 ∈ suc ω ↦ dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) ) ) |
3 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) |
4 |
3
|
dmeqd |
⊢ ( 𝑛 = 𝑁 → dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝑁 ∈ suc ω ∧ 𝑛 = 𝑁 ) → dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) |
6 |
|
id |
⊢ ( 𝑁 ∈ suc ω → 𝑁 ∈ suc ω ) |
7 |
|
fvex |
⊢ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∈ V |
8 |
7
|
dmex |
⊢ dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∈ V |
9 |
8
|
a1i |
⊢ ( 𝑁 ∈ suc ω → dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∈ V ) |
10 |
2 5 6 9
|
fvmptd |
⊢ ( 𝑁 ∈ suc ω → ( Fmla ‘ 𝑁 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) |