| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmlaomn0 |
⊢ ( 𝑥 ∈ ω → ∅ ∉ ( Fmla ‘ 𝑥 ) ) |
| 2 |
|
df-nel |
⊢ ( ∅ ∉ ( Fmla ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( Fmla ‘ 𝑥 ) ) |
| 3 |
1 2
|
sylib |
⊢ ( 𝑥 ∈ ω → ¬ ∅ ∈ ( Fmla ‘ 𝑥 ) ) |
| 4 |
3
|
nrex |
⊢ ¬ ∃ 𝑥 ∈ ω ∅ ∈ ( Fmla ‘ 𝑥 ) |
| 5 |
|
df-nel |
⊢ ( ∅ ∉ ( Fmla ‘ ω ) ↔ ¬ ∅ ∈ ( Fmla ‘ ω ) ) |
| 6 |
|
fmla |
⊢ ( Fmla ‘ ω ) = ∪ 𝑥 ∈ ω ( Fmla ‘ 𝑥 ) |
| 7 |
6
|
eleq2i |
⊢ ( ∅ ∈ ( Fmla ‘ ω ) ↔ ∅ ∈ ∪ 𝑥 ∈ ω ( Fmla ‘ 𝑥 ) ) |
| 8 |
|
eliun |
⊢ ( ∅ ∈ ∪ 𝑥 ∈ ω ( Fmla ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ ω ∅ ∈ ( Fmla ‘ 𝑥 ) ) |
| 9 |
7 8
|
bitri |
⊢ ( ∅ ∈ ( Fmla ‘ ω ) ↔ ∃ 𝑥 ∈ ω ∅ ∈ ( Fmla ‘ 𝑥 ) ) |
| 10 |
5 9
|
xchbinx |
⊢ ( ∅ ∉ ( Fmla ‘ ω ) ↔ ¬ ∃ 𝑥 ∈ ω ∅ ∈ ( Fmla ‘ 𝑥 ) ) |
| 11 |
4 10
|
mpbir |
⊢ ∅ ∉ ( Fmla ‘ ω ) |