| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( Fmla ‘ 𝑥 ) = ( Fmla ‘ ∅ ) ) |
| 2 |
1
|
eleq2d |
⊢ ( 𝑥 = ∅ → ( ∅ ∈ ( Fmla ‘ 𝑥 ) ↔ ∅ ∈ ( Fmla ‘ ∅ ) ) ) |
| 3 |
2
|
notbid |
⊢ ( 𝑥 = ∅ → ( ¬ ∅ ∈ ( Fmla ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( Fmla ‘ ∅ ) ) ) |
| 4 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( Fmla ‘ 𝑥 ) = ( Fmla ‘ 𝑦 ) ) |
| 5 |
4
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( ∅ ∈ ( Fmla ‘ 𝑥 ) ↔ ∅ ∈ ( Fmla ‘ 𝑦 ) ) ) |
| 6 |
5
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ ∅ ∈ ( Fmla ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( Fmla ‘ 𝑥 ) = ( Fmla ‘ suc 𝑦 ) ) |
| 8 |
7
|
eleq2d |
⊢ ( 𝑥 = suc 𝑦 → ( ∅ ∈ ( Fmla ‘ 𝑥 ) ↔ ∅ ∈ ( Fmla ‘ suc 𝑦 ) ) ) |
| 9 |
8
|
notbid |
⊢ ( 𝑥 = suc 𝑦 → ( ¬ ∅ ∈ ( Fmla ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( Fmla ‘ suc 𝑦 ) ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( Fmla ‘ 𝑥 ) = ( Fmla ‘ 𝑁 ) ) |
| 11 |
10
|
eleq2d |
⊢ ( 𝑥 = 𝑁 → ( ∅ ∈ ( Fmla ‘ 𝑥 ) ↔ ∅ ∈ ( Fmla ‘ 𝑁 ) ) ) |
| 12 |
11
|
notbid |
⊢ ( 𝑥 = 𝑁 → ( ¬ ∅ ∈ ( Fmla ‘ 𝑥 ) ↔ ¬ ∅ ∈ ( Fmla ‘ 𝑁 ) ) ) |
| 13 |
|
0ex |
⊢ ∅ ∈ V |
| 14 |
|
opex |
⊢ 〈 𝑖 , 𝑗 〉 ∈ V |
| 15 |
13 14
|
pm3.2i |
⊢ ( ∅ ∈ V ∧ 〈 𝑖 , 𝑗 〉 ∈ V ) |
| 16 |
15
|
a1i |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ∅ ∈ V ∧ 〈 𝑖 , 𝑗 〉 ∈ V ) ) |
| 17 |
|
necom |
⊢ ( ∅ ≠ 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 ↔ 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 ≠ ∅ ) |
| 18 |
|
opnz |
⊢ ( 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 ≠ ∅ ↔ ( ∅ ∈ V ∧ 〈 𝑖 , 𝑗 〉 ∈ V ) ) |
| 19 |
17 18
|
bitri |
⊢ ( ∅ ≠ 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 ↔ ( ∅ ∈ V ∧ 〈 𝑖 , 𝑗 〉 ∈ V ) ) |
| 20 |
16 19
|
sylibr |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ∅ ≠ 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 ) |
| 21 |
20
|
neneqd |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ¬ ∅ = 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 ) |
| 22 |
|
goel |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑖 ∈𝑔 𝑗 ) = 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 ) |
| 23 |
22
|
eqeq2d |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ∅ = ( 𝑖 ∈𝑔 𝑗 ) ↔ ∅ = 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 ) ) |
| 24 |
21 23
|
mtbird |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ¬ ∅ = ( 𝑖 ∈𝑔 𝑗 ) ) |
| 25 |
24
|
rgen2 |
⊢ ∀ 𝑖 ∈ ω ∀ 𝑗 ∈ ω ¬ ∅ = ( 𝑖 ∈𝑔 𝑗 ) |
| 26 |
|
ralnex2 |
⊢ ( ∀ 𝑖 ∈ ω ∀ 𝑗 ∈ ω ¬ ∅ = ( 𝑖 ∈𝑔 𝑗 ) ↔ ¬ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∅ = ( 𝑖 ∈𝑔 𝑗 ) ) |
| 27 |
25 26
|
mpbi |
⊢ ¬ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∅ = ( 𝑖 ∈𝑔 𝑗 ) |
| 28 |
27
|
intnan |
⊢ ¬ ( ∅ ∈ V ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∅ = ( 𝑖 ∈𝑔 𝑗 ) ) |
| 29 |
|
fmla0 |
⊢ ( Fmla ‘ ∅ ) = { 𝑥 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) } |
| 30 |
29
|
eleq2i |
⊢ ( ∅ ∈ ( Fmla ‘ ∅ ) ↔ ∅ ∈ { 𝑥 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) } ) |
| 31 |
|
eqeq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ↔ ∅ = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 32 |
31
|
2rexbidv |
⊢ ( 𝑥 = ∅ → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∅ = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 33 |
32
|
elrab |
⊢ ( ∅ ∈ { 𝑥 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) } ↔ ( ∅ ∈ V ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∅ = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 34 |
30 33
|
bitri |
⊢ ( ∅ ∈ ( Fmla ‘ ∅ ) ↔ ( ∅ ∈ V ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∅ = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 35 |
28 34
|
mtbir |
⊢ ¬ ∅ ∈ ( Fmla ‘ ∅ ) |
| 36 |
|
simpr |
⊢ ( ( 𝑦 ∈ ω ∧ ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) ) → ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) ) |
| 37 |
|
1oex |
⊢ 1o ∈ V |
| 38 |
|
opex |
⊢ 〈 𝑢 , 𝑣 〉 ∈ V |
| 39 |
37 38
|
opnzi |
⊢ 〈 1o , 〈 𝑢 , 𝑣 〉 〉 ≠ ∅ |
| 40 |
39
|
nesymi |
⊢ ¬ ∅ = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 |
| 41 |
|
gonafv |
⊢ ( ( 𝑢 ∈ ( Fmla ‘ 𝑦 ) ∧ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ) → ( 𝑢 ⊼𝑔 𝑣 ) = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 ) |
| 42 |
41
|
adantll |
⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ) ∧ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ) → ( 𝑢 ⊼𝑔 𝑣 ) = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 ) |
| 43 |
42
|
eqeq2d |
⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ) ∧ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ) → ( ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ↔ ∅ = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 ) ) |
| 44 |
40 43
|
mtbiri |
⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ) ∧ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ) → ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ) |
| 45 |
44
|
ralrimiva |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ) → ∀ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ) |
| 46 |
|
2oex |
⊢ 2o ∈ V |
| 47 |
|
opex |
⊢ 〈 𝑖 , 𝑢 〉 ∈ V |
| 48 |
46 47
|
opnzi |
⊢ 〈 2o , 〈 𝑖 , 𝑢 〉 〉 ≠ ∅ |
| 49 |
48
|
nesymi |
⊢ ¬ ∅ = 〈 2o , 〈 𝑖 , 𝑢 〉 〉 |
| 50 |
|
df-goal |
⊢ ∀𝑔 𝑖 𝑢 = 〈 2o , 〈 𝑖 , 𝑢 〉 〉 |
| 51 |
50
|
eqeq2i |
⊢ ( ∅ = ∀𝑔 𝑖 𝑢 ↔ ∅ = 〈 2o , 〈 𝑖 , 𝑢 〉 〉 ) |
| 52 |
49 51
|
mtbir |
⊢ ¬ ∅ = ∀𝑔 𝑖 𝑢 |
| 53 |
52
|
a1i |
⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ) ∧ 𝑖 ∈ ω ) → ¬ ∅ = ∀𝑔 𝑖 𝑢 ) |
| 54 |
53
|
ralrimiva |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ) → ∀ 𝑖 ∈ ω ¬ ∅ = ∀𝑔 𝑖 𝑢 ) |
| 55 |
45 54
|
jca |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ) → ( ∀ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 56 |
55
|
ralrimiva |
⊢ ( 𝑦 ∈ ω → ∀ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∀ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝑦 ∈ ω ∧ ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) ) → ∀ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∀ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 58 |
|
ralnex |
⊢ ( ∀ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ↔ ¬ ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ) |
| 59 |
|
ralnex |
⊢ ( ∀ 𝑖 ∈ ω ¬ ∅ = ∀𝑔 𝑖 𝑢 ↔ ¬ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) |
| 60 |
58 59
|
anbi12i |
⊢ ( ( ∀ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ ∅ = ∀𝑔 𝑖 𝑢 ) ↔ ( ¬ ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ¬ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 61 |
|
ioran |
⊢ ( ¬ ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ↔ ( ¬ ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ¬ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 62 |
60 61
|
bitr4i |
⊢ ( ( ∀ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ ∅ = ∀𝑔 𝑖 𝑢 ) ↔ ¬ ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 63 |
62
|
ralbii |
⊢ ( ∀ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∀ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ ∅ = ∀𝑔 𝑖 𝑢 ) ↔ ∀ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ¬ ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 64 |
|
ralnex |
⊢ ( ∀ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ¬ ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ↔ ¬ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 65 |
63 64
|
bitri |
⊢ ( ∀ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∀ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ¬ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∧ ∀ 𝑖 ∈ ω ¬ ∅ = ∀𝑔 𝑖 𝑢 ) ↔ ¬ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 66 |
57 65
|
sylib |
⊢ ( ( 𝑦 ∈ ω ∧ ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) ) → ¬ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 67 |
|
ioran |
⊢ ( ¬ ( ∅ ∈ ( Fmla ‘ 𝑦 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) ↔ ( ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) ∧ ¬ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) ) |
| 68 |
36 66 67
|
sylanbrc |
⊢ ( ( 𝑦 ∈ ω ∧ ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) ) → ¬ ( ∅ ∈ ( Fmla ‘ 𝑦 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) ) |
| 69 |
|
fmlasuc |
⊢ ( 𝑦 ∈ ω → ( Fmla ‘ suc 𝑦 ) = ( ( Fmla ‘ 𝑦 ) ∪ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ) ) |
| 70 |
69
|
eleq2d |
⊢ ( 𝑦 ∈ ω → ( ∅ ∈ ( Fmla ‘ suc 𝑦 ) ↔ ∅ ∈ ( ( Fmla ‘ 𝑦 ) ∪ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ) ) ) |
| 71 |
|
elun |
⊢ ( ∅ ∈ ( ( Fmla ‘ 𝑦 ) ∪ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ) ↔ ( ∅ ∈ ( Fmla ‘ 𝑦 ) ∨ ∅ ∈ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ) ) |
| 72 |
|
eqeq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ↔ ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ) ) |
| 73 |
72
|
rexbidv |
⊢ ( 𝑥 = ∅ → ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ↔ ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ) ) |
| 74 |
|
eqeq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 = ∀𝑔 𝑖 𝑢 ↔ ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 75 |
74
|
rexbidv |
⊢ ( 𝑥 = ∅ → ( ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ↔ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 76 |
73 75
|
orbi12d |
⊢ ( 𝑥 = ∅ → ( ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ↔ ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) ) |
| 77 |
76
|
rexbidv |
⊢ ( 𝑥 = ∅ → ( ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ↔ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) ) |
| 78 |
13 77
|
elab |
⊢ ( ∅ ∈ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ↔ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) |
| 79 |
78
|
orbi2i |
⊢ ( ( ∅ ∈ ( Fmla ‘ 𝑦 ) ∨ ∅ ∈ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ) ↔ ( ∅ ∈ ( Fmla ‘ 𝑦 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) ) |
| 80 |
71 79
|
bitri |
⊢ ( ∅ ∈ ( ( Fmla ‘ 𝑦 ) ∪ { 𝑥 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) } ) ↔ ( ∅ ∈ ( Fmla ‘ 𝑦 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) ) |
| 81 |
70 80
|
bitrdi |
⊢ ( 𝑦 ∈ ω → ( ∅ ∈ ( Fmla ‘ suc 𝑦 ) ↔ ( ∅ ∈ ( Fmla ‘ 𝑦 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) ) ) |
| 82 |
81
|
adantr |
⊢ ( ( 𝑦 ∈ ω ∧ ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) ) → ( ∅ ∈ ( Fmla ‘ suc 𝑦 ) ↔ ( ∅ ∈ ( Fmla ‘ 𝑦 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑦 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑦 ) ∅ = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ∅ = ∀𝑔 𝑖 𝑢 ) ) ) ) |
| 83 |
68 82
|
mtbird |
⊢ ( ( 𝑦 ∈ ω ∧ ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) ) → ¬ ∅ ∈ ( Fmla ‘ suc 𝑦 ) ) |
| 84 |
83
|
ex |
⊢ ( 𝑦 ∈ ω → ( ¬ ∅ ∈ ( Fmla ‘ 𝑦 ) → ¬ ∅ ∈ ( Fmla ‘ suc 𝑦 ) ) ) |
| 85 |
3 6 9 12 35 84
|
finds |
⊢ ( 𝑁 ∈ ω → ¬ ∅ ∈ ( Fmla ‘ 𝑁 ) ) |
| 86 |
|
df-nel |
⊢ ( ∅ ∉ ( Fmla ‘ 𝑁 ) ↔ ¬ ∅ ∈ ( Fmla ‘ 𝑁 ) ) |
| 87 |
85 86
|
sylibr |
⊢ ( 𝑁 ∈ ω → ∅ ∉ ( Fmla ‘ 𝑁 ) ) |