Metamath Proof Explorer


Theorem fmlasuc0

Description: The valid Godel formulas of height ( N + 1 ) . (Contributed by AV, 18-Sep-2023)

Ref Expression
Assertion fmlasuc0 ( 𝑁 ∈ ω → ( Fmla ‘ suc 𝑁 ) = ( ( Fmla ‘ 𝑁 ) ∪ { 𝑥 ∣ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) } ) )

Proof

Step Hyp Ref Expression
1 df-fmla Fmla = ( 𝑛 ∈ suc ω ↦ dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) )
2 fveq2 ( 𝑛 = suc 𝑁 → ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) )
3 2 dmeqd ( 𝑛 = suc 𝑁 → dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = dom ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) )
4 omsucelsucb ( 𝑁 ∈ ω ↔ suc 𝑁 ∈ suc ω )
5 4 biimpi ( 𝑁 ∈ ω → suc 𝑁 ∈ suc ω )
6 fvex ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) ∈ V
7 6 dmex dom ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) ∈ V
8 7 a1i ( 𝑁 ∈ ω → dom ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) ∈ V )
9 1 3 5 8 fvmptd3 ( 𝑁 ∈ ω → ( Fmla ‘ suc 𝑁 ) = dom ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) )
10 satf0sucom ( suc 𝑁 ∈ suc ω → ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ suc 𝑁 ) )
11 5 10 syl ( 𝑁 ∈ ω → ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ suc 𝑁 ) )
12 nnon ( 𝑁 ∈ ω → 𝑁 ∈ On )
13 rdgsuc ( 𝑁 ∈ On → ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ suc 𝑁 ) = ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑁 ) ) )
14 12 13 syl ( 𝑁 ∈ ω → ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ suc 𝑁 ) = ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑁 ) ) )
15 11 14 eqtrd ( 𝑁 ∈ ω → ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) = ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑁 ) ) )
16 15 dmeqd ( 𝑁 ∈ ω → dom ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) = dom ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑁 ) ) )
17 elelsuc ( 𝑁 ∈ ω → 𝑁 ∈ suc ω )
18 satf0sucom ( 𝑁 ∈ suc ω → ( ( ∅ Sat ∅ ) ‘ 𝑁 ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑁 ) )
19 18 eqcomd ( 𝑁 ∈ suc ω → ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑁 ) = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) )
20 17 19 syl ( 𝑁 ∈ ω → ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑁 ) = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) )
21 20 fveq2d ( 𝑁 ∈ ω → ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑁 ) ) = ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) ‘ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) )
22 eqidd ( 𝑁 ∈ ω → ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) = ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) )
23 id ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) → 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) )
24 rexeq ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) → ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ↔ ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ) )
25 24 orbi1d ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) → ( ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ↔ ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) )
26 25 rexeqbi1dv ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) → ( ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ↔ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) )
27 26 anbi2d ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) → ( ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ↔ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ) )
28 27 opabbidv ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } )
29 23 28 uneq12d ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) → ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) = ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) )
30 29 adantl ( ( 𝑁 ∈ ω ∧ 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) → ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) = ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) )
31 fvex ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∈ V
32 31 a1i ( 𝑁 ∈ ω → ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∈ V )
33 peano1 ∅ ∈ ω
34 eleq1 ( 𝑦 = ∅ → ( 𝑦 ∈ ω ↔ ∅ ∈ ω ) )
35 33 34 mpbiri ( 𝑦 = ∅ → 𝑦 ∈ ω )
36 35 adantr ( ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) → 𝑦 ∈ ω )
37 36 pm4.71ri ( ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ↔ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ) )
38 37 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ) }
39 omex ω ∈ V
40 id ( ω ∈ V → ω ∈ V )
41 unab ( { 𝑥 ∣ ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) } ∪ { 𝑥 ∣ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) } ) = { 𝑥 ∣ ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) }
42 31 abrexex { 𝑥 ∣ ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) } ∈ V
43 39 abrexex { 𝑥 ∣ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) } ∈ V
44 42 43 unex ( { 𝑥 ∣ ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) } ∪ { 𝑥 ∣ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) } ) ∈ V
45 41 44 eqeltrri { 𝑥 ∣ ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) } ∈ V
46 45 a1i ( ( ( ω ∈ V ∧ 𝑦 ∈ ω ) ∧ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) → { 𝑥 ∣ ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) } ∈ V )
47 46 ralrimiva ( ( ω ∈ V ∧ 𝑦 ∈ ω ) → ∀ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) { 𝑥 ∣ ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) } ∈ V )
48 abrexex2g ( ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∈ V ∧ ∀ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) { 𝑥 ∣ ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) } ∈ V ) → { 𝑥 ∣ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) } ∈ V )
49 31 47 48 sylancr ( ( ω ∈ V ∧ 𝑦 ∈ ω ) → { 𝑥 ∣ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) } ∈ V )
50 40 49 opabex3rd ( ω ∈ V → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 ∈ ω ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ∈ V )
51 39 50 ax-mp { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 ∈ ω ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ∈ V
52 simpr ( ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) → ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) )
53 52 anim2i ( ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ) → ( 𝑦 ∈ ω ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) )
54 53 ssopab2i { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ) } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 ∈ ω ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) }
55 51 54 ssexi { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ) } ∈ V
56 55 a1i ( 𝑁 ∈ ω → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ) } ∈ V )
57 38 56 eqeltrid ( 𝑁 ∈ ω → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ∈ V )
58 unexg ( ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∈ V ∧ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ∈ V ) → ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ∈ V )
59 31 57 58 sylancr ( 𝑁 ∈ ω → ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ∈ V )
60 22 30 32 59 fvmptd ( 𝑁 ∈ ω → ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) ‘ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) = ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) )
61 21 60 eqtrd ( 𝑁 ∈ ω → ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑁 ) ) = ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) )
62 61 dmeqd ( 𝑁 ∈ ω → dom ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑁 ) ) = dom ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) )
63 dmun dom ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) = ( dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } )
64 62 63 eqtrdi ( 𝑁 ∈ ω → dom ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑁 ) ) = ( dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) )
65 fmlafv ( 𝑁 ∈ suc ω → ( Fmla ‘ 𝑁 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) )
66 17 65 syl ( 𝑁 ∈ ω → ( Fmla ‘ 𝑁 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) )
67 66 eqcomd ( 𝑁 ∈ ω → dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) = ( Fmla ‘ 𝑁 ) )
68 dmopab dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) }
69 68 a1i ( 𝑁 ∈ ω → dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } )
70 0ex ∅ ∈ V
71 70 isseti 𝑦 𝑦 = ∅
72 19.41v ( ∃ 𝑦 ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ↔ ( ∃ 𝑦 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) )
73 71 72 mpbiran ( ∃ 𝑦 ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) ↔ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) )
74 73 abbii { 𝑥 ∣ ∃ 𝑦 ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } = { 𝑥 ∣ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) }
75 69 74 eqtrdi ( 𝑁 ∈ ω → dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } = { 𝑥 ∣ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) } )
76 67 75 uneq12d ( 𝑁 ∈ ω → ( dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ dom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) = ( ( Fmla ‘ 𝑁 ) ∪ { 𝑥 ∣ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) } ) )
77 64 76 eqtrd ( 𝑁 ∈ ω → dom ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢𝑓 ( ∃ 𝑣𝑓 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) ) } ) ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖𝑔 𝑗 ) ) } ) ‘ 𝑁 ) ) = ( ( Fmla ‘ 𝑁 ) ∪ { 𝑥 ∣ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) } ) )
78 9 16 77 3eqtrd ( 𝑁 ∈ ω → ( Fmla ‘ suc 𝑁 ) = ( ( Fmla ‘ 𝑁 ) ∪ { 𝑥 ∣ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st𝑢 ) ⊼𝑔 ( 1st𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st𝑢 ) ) } ) )