| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmpoco.1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  𝑅  ∈  𝐶 ) | 
						
							| 2 |  | fmpoco.2 | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝑅 ) ) | 
						
							| 3 |  | fmpoco.3 | ⊢ ( 𝜑  →  𝐺  =  ( 𝑧  ∈  𝐶  ↦  𝑆 ) ) | 
						
							| 4 |  | fmpoco.4 | ⊢ ( 𝑧  =  𝑅  →  𝑆  =  𝑇 ) | 
						
							| 5 | 1 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑅  ∈  𝐶 ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝑅 )  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝑅 ) | 
						
							| 7 | 6 | fmpo | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑅  ∈  𝐶  ↔  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝑅 ) : ( 𝐴  ×  𝐵 ) ⟶ 𝐶 ) | 
						
							| 8 | 5 7 | sylib | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝑅 ) : ( 𝐴  ×  𝐵 ) ⟶ 𝐶 ) | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑢 𝑅 | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑣 𝑅 | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑥 𝑣 | 
						
							| 12 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑢  /  𝑥 ⦌ 𝑅 | 
						
							| 13 | 11 12 | nfcsbw | ⊢ Ⅎ 𝑥 ⦋ 𝑣  /  𝑦 ⦌ ⦋ 𝑢  /  𝑥 ⦌ 𝑅 | 
						
							| 14 |  | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑣  /  𝑦 ⦌ ⦋ 𝑢  /  𝑥 ⦌ 𝑅 | 
						
							| 15 |  | csbeq1a | ⊢ ( 𝑥  =  𝑢  →  𝑅  =  ⦋ 𝑢  /  𝑥 ⦌ 𝑅 ) | 
						
							| 16 |  | csbeq1a | ⊢ ( 𝑦  =  𝑣  →  ⦋ 𝑢  /  𝑥 ⦌ 𝑅  =  ⦋ 𝑣  /  𝑦 ⦌ ⦋ 𝑢  /  𝑥 ⦌ 𝑅 ) | 
						
							| 17 | 15 16 | sylan9eq | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  𝑅  =  ⦋ 𝑣  /  𝑦 ⦌ ⦋ 𝑢  /  𝑥 ⦌ 𝑅 ) | 
						
							| 18 | 9 10 13 14 17 | cbvmpo | ⊢ ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝑅 )  =  ( 𝑢  ∈  𝐴 ,  𝑣  ∈  𝐵  ↦  ⦋ 𝑣  /  𝑦 ⦌ ⦋ 𝑢  /  𝑥 ⦌ 𝑅 ) | 
						
							| 19 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 20 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 21 | 19 20 | op2ndd | ⊢ ( 𝑤  =  〈 𝑢 ,  𝑣 〉  →  ( 2nd  ‘ 𝑤 )  =  𝑣 ) | 
						
							| 22 | 21 | csbeq1d | ⊢ ( 𝑤  =  〈 𝑢 ,  𝑣 〉  →  ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ 𝑅  =  ⦋ 𝑣  /  𝑦 ⦌ ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ 𝑅 ) | 
						
							| 23 | 19 20 | op1std | ⊢ ( 𝑤  =  〈 𝑢 ,  𝑣 〉  →  ( 1st  ‘ 𝑤 )  =  𝑢 ) | 
						
							| 24 | 23 | csbeq1d | ⊢ ( 𝑤  =  〈 𝑢 ,  𝑣 〉  →  ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ 𝑅  =  ⦋ 𝑢  /  𝑥 ⦌ 𝑅 ) | 
						
							| 25 | 24 | csbeq2dv | ⊢ ( 𝑤  =  〈 𝑢 ,  𝑣 〉  →  ⦋ 𝑣  /  𝑦 ⦌ ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ 𝑅  =  ⦋ 𝑣  /  𝑦 ⦌ ⦋ 𝑢  /  𝑥 ⦌ 𝑅 ) | 
						
							| 26 | 22 25 | eqtrd | ⊢ ( 𝑤  =  〈 𝑢 ,  𝑣 〉  →  ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ 𝑅  =  ⦋ 𝑣  /  𝑦 ⦌ ⦋ 𝑢  /  𝑥 ⦌ 𝑅 ) | 
						
							| 27 | 26 | mpompt | ⊢ ( 𝑤  ∈  ( 𝐴  ×  𝐵 )  ↦  ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ 𝑅 )  =  ( 𝑢  ∈  𝐴 ,  𝑣  ∈  𝐵  ↦  ⦋ 𝑣  /  𝑦 ⦌ ⦋ 𝑢  /  𝑥 ⦌ 𝑅 ) | 
						
							| 28 | 18 27 | eqtr4i | ⊢ ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝑅 )  =  ( 𝑤  ∈  ( 𝐴  ×  𝐵 )  ↦  ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ 𝑅 ) | 
						
							| 29 | 28 | fmpt | ⊢ ( ∀ 𝑤  ∈  ( 𝐴  ×  𝐵 ) ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ 𝑅  ∈  𝐶  ↔  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝑅 ) : ( 𝐴  ×  𝐵 ) ⟶ 𝐶 ) | 
						
							| 30 | 8 29 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  ( 𝐴  ×  𝐵 ) ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ 𝑅  ∈  𝐶 ) | 
						
							| 31 | 2 28 | eqtrdi | ⊢ ( 𝜑  →  𝐹  =  ( 𝑤  ∈  ( 𝐴  ×  𝐵 )  ↦  ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ 𝑅 ) ) | 
						
							| 32 | 30 31 3 | fmptcos | ⊢ ( 𝜑  →  ( 𝐺  ∘  𝐹 )  =  ( 𝑤  ∈  ( 𝐴  ×  𝐵 )  ↦  ⦋ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ 𝑅  /  𝑧 ⦌ 𝑆 ) ) | 
						
							| 33 | 26 | csbeq1d | ⊢ ( 𝑤  =  〈 𝑢 ,  𝑣 〉  →  ⦋ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ 𝑅  /  𝑧 ⦌ 𝑆  =  ⦋ ⦋ 𝑣  /  𝑦 ⦌ ⦋ 𝑢  /  𝑥 ⦌ 𝑅  /  𝑧 ⦌ 𝑆 ) | 
						
							| 34 | 33 | mpompt | ⊢ ( 𝑤  ∈  ( 𝐴  ×  𝐵 )  ↦  ⦋ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ 𝑅  /  𝑧 ⦌ 𝑆 )  =  ( 𝑢  ∈  𝐴 ,  𝑣  ∈  𝐵  ↦  ⦋ ⦋ 𝑣  /  𝑦 ⦌ ⦋ 𝑢  /  𝑥 ⦌ 𝑅  /  𝑧 ⦌ 𝑆 ) | 
						
							| 35 |  | nfcv | ⊢ Ⅎ 𝑢 ⦋ 𝑅  /  𝑧 ⦌ 𝑆 | 
						
							| 36 |  | nfcv | ⊢ Ⅎ 𝑣 ⦋ 𝑅  /  𝑧 ⦌ 𝑆 | 
						
							| 37 |  | nfcv | ⊢ Ⅎ 𝑥 𝑆 | 
						
							| 38 | 13 37 | nfcsbw | ⊢ Ⅎ 𝑥 ⦋ ⦋ 𝑣  /  𝑦 ⦌ ⦋ 𝑢  /  𝑥 ⦌ 𝑅  /  𝑧 ⦌ 𝑆 | 
						
							| 39 |  | nfcv | ⊢ Ⅎ 𝑦 𝑆 | 
						
							| 40 | 14 39 | nfcsbw | ⊢ Ⅎ 𝑦 ⦋ ⦋ 𝑣  /  𝑦 ⦌ ⦋ 𝑢  /  𝑥 ⦌ 𝑅  /  𝑧 ⦌ 𝑆 | 
						
							| 41 | 17 | csbeq1d | ⊢ ( ( 𝑥  =  𝑢  ∧  𝑦  =  𝑣 )  →  ⦋ 𝑅  /  𝑧 ⦌ 𝑆  =  ⦋ ⦋ 𝑣  /  𝑦 ⦌ ⦋ 𝑢  /  𝑥 ⦌ 𝑅  /  𝑧 ⦌ 𝑆 ) | 
						
							| 42 | 35 36 38 40 41 | cbvmpo | ⊢ ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  ⦋ 𝑅  /  𝑧 ⦌ 𝑆 )  =  ( 𝑢  ∈  𝐴 ,  𝑣  ∈  𝐵  ↦  ⦋ ⦋ 𝑣  /  𝑦 ⦌ ⦋ 𝑢  /  𝑥 ⦌ 𝑅  /  𝑧 ⦌ 𝑆 ) | 
						
							| 43 | 34 42 | eqtr4i | ⊢ ( 𝑤  ∈  ( 𝐴  ×  𝐵 )  ↦  ⦋ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ 𝑅  /  𝑧 ⦌ 𝑆 )  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  ⦋ 𝑅  /  𝑧 ⦌ 𝑆 ) | 
						
							| 44 | 1 | 3impb | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  𝑅  ∈  𝐶 ) | 
						
							| 45 |  | nfcvd | ⊢ ( 𝑅  ∈  𝐶  →  Ⅎ 𝑧 𝑇 ) | 
						
							| 46 | 45 4 | csbiegf | ⊢ ( 𝑅  ∈  𝐶  →  ⦋ 𝑅  /  𝑧 ⦌ 𝑆  =  𝑇 ) | 
						
							| 47 | 44 46 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ⦋ 𝑅  /  𝑧 ⦌ 𝑆  =  𝑇 ) | 
						
							| 48 | 47 | mpoeq3dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  ⦋ 𝑅  /  𝑧 ⦌ 𝑆 )  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝑇 ) ) | 
						
							| 49 | 43 48 | eqtrid | ⊢ ( 𝜑  →  ( 𝑤  ∈  ( 𝐴  ×  𝐵 )  ↦  ⦋ ⦋ ( 2nd  ‘ 𝑤 )  /  𝑦 ⦌ ⦋ ( 1st  ‘ 𝑤 )  /  𝑥 ⦌ 𝑅  /  𝑧 ⦌ 𝑆 )  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝑇 ) ) | 
						
							| 50 | 32 49 | eqtrd | ⊢ ( 𝜑  →  ( 𝐺  ∘  𝐹 )  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝑇 ) ) |