Step |
Hyp |
Ref |
Expression |
1 |
|
fmpoco.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑅 ∈ 𝐶 ) |
2 |
|
fmpoco.2 |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝑅 ) ) |
3 |
|
fmpoco.3 |
⊢ ( 𝜑 → 𝐺 = ( 𝑧 ∈ 𝐶 ↦ 𝑆 ) ) |
4 |
|
fmpoco.4 |
⊢ ( 𝑧 = 𝑅 → 𝑆 = 𝑇 ) |
5 |
1
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑅 ∈ 𝐶 ) |
6 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝑅 ) |
7 |
6
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑅 ∈ 𝐶 ↔ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝑅 ) : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ) |
8 |
5 7
|
sylib |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝑅 ) : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑢 𝑅 |
10 |
|
nfcv |
⊢ Ⅎ 𝑣 𝑅 |
11 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑣 |
12 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑥 ⦌ 𝑅 |
13 |
11 12
|
nfcsbw |
⊢ Ⅎ 𝑥 ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝑅 |
14 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝑅 |
15 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑢 → 𝑅 = ⦋ 𝑢 / 𝑥 ⦌ 𝑅 ) |
16 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑣 → ⦋ 𝑢 / 𝑥 ⦌ 𝑅 = ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝑅 ) |
17 |
15 16
|
sylan9eq |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑅 = ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝑅 ) |
18 |
9 10 13 14 17
|
cbvmpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝑅 ) = ( 𝑢 ∈ 𝐴 , 𝑣 ∈ 𝐵 ↦ ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝑅 ) |
19 |
|
vex |
⊢ 𝑢 ∈ V |
20 |
|
vex |
⊢ 𝑣 ∈ V |
21 |
19 20
|
op2ndd |
⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ( 2nd ‘ 𝑤 ) = 𝑣 ) |
22 |
21
|
csbeq1d |
⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ 𝑅 = ⦋ 𝑣 / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ 𝑅 ) |
23 |
19 20
|
op1std |
⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ( 1st ‘ 𝑤 ) = 𝑢 ) |
24 |
23
|
csbeq1d |
⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ 𝑅 = ⦋ 𝑢 / 𝑥 ⦌ 𝑅 ) |
25 |
24
|
csbeq2dv |
⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ⦋ 𝑣 / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ 𝑅 = ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝑅 ) |
26 |
22 25
|
eqtrd |
⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ 𝑅 = ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝑅 ) |
27 |
26
|
mpompt |
⊢ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ 𝑅 ) = ( 𝑢 ∈ 𝐴 , 𝑣 ∈ 𝐵 ↦ ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝑅 ) |
28 |
18 27
|
eqtr4i |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝑅 ) = ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ 𝑅 ) |
29 |
28
|
fmpt |
⊢ ( ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ 𝑅 ∈ 𝐶 ↔ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝑅 ) : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ) |
30 |
8 29
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ 𝑅 ∈ 𝐶 ) |
31 |
2 28
|
eqtrdi |
⊢ ( 𝜑 → 𝐹 = ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ 𝑅 ) ) |
32 |
30 31 3
|
fmptcos |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ⦋ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ 𝑅 / 𝑧 ⦌ 𝑆 ) ) |
33 |
26
|
csbeq1d |
⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ⦋ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ 𝑅 / 𝑧 ⦌ 𝑆 = ⦋ ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝑅 / 𝑧 ⦌ 𝑆 ) |
34 |
33
|
mpompt |
⊢ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ⦋ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ 𝑅 / 𝑧 ⦌ 𝑆 ) = ( 𝑢 ∈ 𝐴 , 𝑣 ∈ 𝐵 ↦ ⦋ ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝑅 / 𝑧 ⦌ 𝑆 ) |
35 |
|
nfcv |
⊢ Ⅎ 𝑢 ⦋ 𝑅 / 𝑧 ⦌ 𝑆 |
36 |
|
nfcv |
⊢ Ⅎ 𝑣 ⦋ 𝑅 / 𝑧 ⦌ 𝑆 |
37 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑆 |
38 |
13 37
|
nfcsbw |
⊢ Ⅎ 𝑥 ⦋ ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝑅 / 𝑧 ⦌ 𝑆 |
39 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑆 |
40 |
14 39
|
nfcsbw |
⊢ Ⅎ 𝑦 ⦋ ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝑅 / 𝑧 ⦌ 𝑆 |
41 |
17
|
csbeq1d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ⦋ 𝑅 / 𝑧 ⦌ 𝑆 = ⦋ ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝑅 / 𝑧 ⦌ 𝑆 ) |
42 |
35 36 38 40 41
|
cbvmpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ⦋ 𝑅 / 𝑧 ⦌ 𝑆 ) = ( 𝑢 ∈ 𝐴 , 𝑣 ∈ 𝐵 ↦ ⦋ ⦋ 𝑣 / 𝑦 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝑅 / 𝑧 ⦌ 𝑆 ) |
43 |
34 42
|
eqtr4i |
⊢ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ⦋ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ 𝑅 / 𝑧 ⦌ 𝑆 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ⦋ 𝑅 / 𝑧 ⦌ 𝑆 ) |
44 |
1
|
3impb |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑅 ∈ 𝐶 ) |
45 |
|
nfcvd |
⊢ ( 𝑅 ∈ 𝐶 → Ⅎ 𝑧 𝑇 ) |
46 |
45 4
|
csbiegf |
⊢ ( 𝑅 ∈ 𝐶 → ⦋ 𝑅 / 𝑧 ⦌ 𝑆 = 𝑇 ) |
47 |
44 46
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ⦋ 𝑅 / 𝑧 ⦌ 𝑆 = 𝑇 ) |
48 |
47
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ ⦋ 𝑅 / 𝑧 ⦌ 𝑆 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝑇 ) ) |
49 |
43 48
|
eqtrid |
⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ⦋ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ 𝑅 / 𝑧 ⦌ 𝑆 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝑇 ) ) |
50 |
32 49
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝑇 ) ) |