Metamath Proof Explorer


Theorem fmpocos

Description: Composition of two functions. Variation of fmpoco with more context in the substitution hypothesis for T . (Contributed by SN, 14-Mar-2025)

Ref Expression
Hypotheses fmpocos.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝑅𝐶 )
fmpocos.2 ( 𝜑𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝑅 ) )
fmpocos.3 ( 𝜑𝐺 = ( 𝑧𝐶𝑆 ) )
fmpocos.4 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝑅 / 𝑧 𝑆 = 𝑇 )
Assertion fmpocos ( 𝜑 → ( 𝐺𝐹 ) = ( 𝑥𝐴 , 𝑦𝐵𝑇 ) )

Proof

Step Hyp Ref Expression
1 fmpocos.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝑅𝐶 )
2 fmpocos.2 ( 𝜑𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝑅 ) )
3 fmpocos.3 ( 𝜑𝐺 = ( 𝑧𝐶𝑆 ) )
4 fmpocos.4 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝑅 / 𝑧 𝑆 = 𝑇 )
5 1 ralrimivva ( 𝜑 → ∀ 𝑥𝐴𝑦𝐵 𝑅𝐶 )
6 eqid ( 𝑥𝐴 , 𝑦𝐵𝑅 ) = ( 𝑥𝐴 , 𝑦𝐵𝑅 )
7 6 fmpo ( ∀ 𝑥𝐴𝑦𝐵 𝑅𝐶 ↔ ( 𝑥𝐴 , 𝑦𝐵𝑅 ) : ( 𝐴 × 𝐵 ) ⟶ 𝐶 )
8 5 7 sylib ( 𝜑 → ( 𝑥𝐴 , 𝑦𝐵𝑅 ) : ( 𝐴 × 𝐵 ) ⟶ 𝐶 )
9 nfcv 𝑢 𝑅
10 nfcv 𝑣 𝑅
11 nfcv 𝑥 𝑣
12 nfcsb1v 𝑥 𝑢 / 𝑥 𝑅
13 11 12 nfcsbw 𝑥 𝑣 / 𝑦 𝑢 / 𝑥 𝑅
14 nfcsb1v 𝑦 𝑣 / 𝑦 𝑢 / 𝑥 𝑅
15 csbeq1a ( 𝑥 = 𝑢𝑅 = 𝑢 / 𝑥 𝑅 )
16 csbeq1a ( 𝑦 = 𝑣 𝑢 / 𝑥 𝑅 = 𝑣 / 𝑦 𝑢 / 𝑥 𝑅 )
17 15 16 sylan9eq ( ( 𝑥 = 𝑢𝑦 = 𝑣 ) → 𝑅 = 𝑣 / 𝑦 𝑢 / 𝑥 𝑅 )
18 9 10 13 14 17 cbvmpo ( 𝑥𝐴 , 𝑦𝐵𝑅 ) = ( 𝑢𝐴 , 𝑣𝐵 𝑣 / 𝑦 𝑢 / 𝑥 𝑅 )
19 vex 𝑢 ∈ V
20 vex 𝑣 ∈ V
21 19 20 op2ndd ( 𝑤 = ⟨ 𝑢 , 𝑣 ⟩ → ( 2nd𝑤 ) = 𝑣 )
22 19 20 op1std ( 𝑤 = ⟨ 𝑢 , 𝑣 ⟩ → ( 1st𝑤 ) = 𝑢 )
23 22 csbeq1d ( 𝑤 = ⟨ 𝑢 , 𝑣 ⟩ → ( 1st𝑤 ) / 𝑥 𝑅 = 𝑢 / 𝑥 𝑅 )
24 21 23 csbeq12dv ( 𝑤 = ⟨ 𝑢 , 𝑣 ⟩ → ( 2nd𝑤 ) / 𝑦 ( 1st𝑤 ) / 𝑥 𝑅 = 𝑣 / 𝑦 𝑢 / 𝑥 𝑅 )
25 24 mpompt ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ( 2nd𝑤 ) / 𝑦 ( 1st𝑤 ) / 𝑥 𝑅 ) = ( 𝑢𝐴 , 𝑣𝐵 𝑣 / 𝑦 𝑢 / 𝑥 𝑅 )
26 18 25 eqtr4i ( 𝑥𝐴 , 𝑦𝐵𝑅 ) = ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ( 2nd𝑤 ) / 𝑦 ( 1st𝑤 ) / 𝑥 𝑅 )
27 26 fmpt ( ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( 2nd𝑤 ) / 𝑦 ( 1st𝑤 ) / 𝑥 𝑅𝐶 ↔ ( 𝑥𝐴 , 𝑦𝐵𝑅 ) : ( 𝐴 × 𝐵 ) ⟶ 𝐶 )
28 8 27 sylibr ( 𝜑 → ∀ 𝑤 ∈ ( 𝐴 × 𝐵 ) ( 2nd𝑤 ) / 𝑦 ( 1st𝑤 ) / 𝑥 𝑅𝐶 )
29 2 26 eqtrdi ( 𝜑𝐹 = ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ( 2nd𝑤 ) / 𝑦 ( 1st𝑤 ) / 𝑥 𝑅 ) )
30 28 29 3 fmptcos ( 𝜑 → ( 𝐺𝐹 ) = ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ( 2nd𝑤 ) / 𝑦 ( 1st𝑤 ) / 𝑥 𝑅 / 𝑧 𝑆 ) )
31 24 csbeq1d ( 𝑤 = ⟨ 𝑢 , 𝑣 ⟩ → ( 2nd𝑤 ) / 𝑦 ( 1st𝑤 ) / 𝑥 𝑅 / 𝑧 𝑆 = 𝑣 / 𝑦 𝑢 / 𝑥 𝑅 / 𝑧 𝑆 )
32 31 mpompt ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ( 2nd𝑤 ) / 𝑦 ( 1st𝑤 ) / 𝑥 𝑅 / 𝑧 𝑆 ) = ( 𝑢𝐴 , 𝑣𝐵 𝑣 / 𝑦 𝑢 / 𝑥 𝑅 / 𝑧 𝑆 )
33 nfcv 𝑢 𝑅 / 𝑧 𝑆
34 nfcv 𝑣 𝑅 / 𝑧 𝑆
35 nfcv 𝑥 𝑆
36 13 35 nfcsbw 𝑥 𝑣 / 𝑦 𝑢 / 𝑥 𝑅 / 𝑧 𝑆
37 nfcv 𝑦 𝑆
38 14 37 nfcsbw 𝑦 𝑣 / 𝑦 𝑢 / 𝑥 𝑅 / 𝑧 𝑆
39 17 csbeq1d ( ( 𝑥 = 𝑢𝑦 = 𝑣 ) → 𝑅 / 𝑧 𝑆 = 𝑣 / 𝑦 𝑢 / 𝑥 𝑅 / 𝑧 𝑆 )
40 33 34 36 38 39 cbvmpo ( 𝑥𝐴 , 𝑦𝐵 𝑅 / 𝑧 𝑆 ) = ( 𝑢𝐴 , 𝑣𝐵 𝑣 / 𝑦 𝑢 / 𝑥 𝑅 / 𝑧 𝑆 )
41 32 40 eqtr4i ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ( 2nd𝑤 ) / 𝑦 ( 1st𝑤 ) / 𝑥 𝑅 / 𝑧 𝑆 ) = ( 𝑥𝐴 , 𝑦𝐵 𝑅 / 𝑧 𝑆 )
42 4 3impb ( ( 𝜑𝑥𝐴𝑦𝐵 ) → 𝑅 / 𝑧 𝑆 = 𝑇 )
43 42 mpoeq3dva ( 𝜑 → ( 𝑥𝐴 , 𝑦𝐵 𝑅 / 𝑧 𝑆 ) = ( 𝑥𝐴 , 𝑦𝐵𝑇 ) )
44 41 43 eqtrid ( 𝜑 → ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ( 2nd𝑤 ) / 𝑦 ( 1st𝑤 ) / 𝑥 𝑅 / 𝑧 𝑆 ) = ( 𝑥𝐴 , 𝑦𝐵𝑇 ) )
45 30 44 eqtrd ( 𝜑 → ( 𝐺𝐹 ) = ( 𝑥𝐴 , 𝑦𝐵𝑇 ) )