| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fmpox.1 | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							vex | 
							⊢ 𝑧  ∈  V  | 
						
						
							| 3 | 
							
								
							 | 
							vex | 
							⊢ 𝑤  ∈  V  | 
						
						
							| 4 | 
							
								2 3
							 | 
							op1std | 
							⊢ ( 𝑣  =  〈 𝑧 ,  𝑤 〉  →  ( 1st  ‘ 𝑣 )  =  𝑧 )  | 
						
						
							| 5 | 
							
								4
							 | 
							csbeq1d | 
							⊢ ( 𝑣  =  〈 𝑧 ,  𝑤 〉  →  ⦋ ( 1st  ‘ 𝑣 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑣 )  /  𝑦 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑣 )  /  𝑦 ⦌ 𝐶 )  | 
						
						
							| 6 | 
							
								2 3
							 | 
							op2ndd | 
							⊢ ( 𝑣  =  〈 𝑧 ,  𝑤 〉  →  ( 2nd  ‘ 𝑣 )  =  𝑤 )  | 
						
						
							| 7 | 
							
								6
							 | 
							csbeq1d | 
							⊢ ( 𝑣  =  〈 𝑧 ,  𝑤 〉  →  ⦋ ( 2nd  ‘ 𝑣 )  /  𝑦 ⦌ 𝐶  =  ⦋ 𝑤  /  𝑦 ⦌ 𝐶 )  | 
						
						
							| 8 | 
							
								7
							 | 
							csbeq2dv | 
							⊢ ( 𝑣  =  〈 𝑧 ,  𝑤 〉  →  ⦋ 𝑧  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑣 )  /  𝑦 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶 )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							eqtrd | 
							⊢ ( 𝑣  =  〈 𝑧 ,  𝑤 〉  →  ⦋ ( 1st  ‘ 𝑣 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑣 )  /  𝑦 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶 )  | 
						
						
							| 10 | 
							
								9
							 | 
							eleq1d | 
							⊢ ( 𝑣  =  〈 𝑧 ,  𝑤 〉  →  ( ⦋ ( 1st  ‘ 𝑣 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑣 )  /  𝑦 ⦌ 𝐶  ∈  𝐷  ↔  ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶  ∈  𝐷 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							raliunxp | 
							⊢ ( ∀ 𝑣  ∈  ∪  𝑧  ∈  𝐴 ( { 𝑧 }  ×  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) ⦋ ( 1st  ‘ 𝑣 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑣 )  /  𝑦 ⦌ 𝐶  ∈  𝐷  ↔  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶  ∈  𝐷 )  | 
						
						
							| 12 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑧 ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  𝑣  =  𝐶 )  | 
						
						
							| 13 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑤 ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  𝑣  =  𝐶 )  | 
						
						
							| 14 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝑧  ∈  𝐴  | 
						
						
							| 15 | 
							
								
							 | 
							nfcsb1v | 
							⊢ Ⅎ 𝑥 ⦋ 𝑧  /  𝑥 ⦌ 𝐵  | 
						
						
							| 16 | 
							
								15
							 | 
							nfcri | 
							⊢ Ⅎ 𝑥 𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  | 
						
						
							| 17 | 
							
								14 16
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 18 | 
							
								
							 | 
							nfcsb1v | 
							⊢ Ⅎ 𝑥 ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶  | 
						
						
							| 19 | 
							
								18
							 | 
							nfeq2 | 
							⊢ Ⅎ 𝑥 𝑣  =  ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶  | 
						
						
							| 20 | 
							
								17 19
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  ∧  𝑣  =  ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶 )  | 
						
						
							| 21 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑦 ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 22 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑦 𝑧  | 
						
						
							| 23 | 
							
								
							 | 
							nfcsb1v | 
							⊢ Ⅎ 𝑦 ⦋ 𝑤  /  𝑦 ⦌ 𝐶  | 
						
						
							| 24 | 
							
								22 23
							 | 
							nfcsbw | 
							⊢ Ⅎ 𝑦 ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶  | 
						
						
							| 25 | 
							
								24
							 | 
							nfeq2 | 
							⊢ Ⅎ 𝑦 𝑣  =  ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶  | 
						
						
							| 26 | 
							
								21 25
							 | 
							nfan | 
							⊢ Ⅎ 𝑦 ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  ∧  𝑣  =  ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶 )  | 
						
						
							| 27 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							adantr | 
							⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑦  =  𝑤  →  ( 𝑦  ∈  𝐵  ↔  𝑤  ∈  𝐵 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							csbeq1a | 
							⊢ ( 𝑥  =  𝑧  →  𝐵  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 31 | 
							
								30
							 | 
							eleq2d | 
							⊢ ( 𝑥  =  𝑧  →  ( 𝑤  ∈  𝐵  ↔  𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							sylan9bbr | 
							⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( 𝑦  ∈  𝐵  ↔  𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) )  | 
						
						
							| 33 | 
							
								28 32
							 | 
							anbi12d | 
							⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ↔  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							csbeq1a | 
							⊢ ( 𝑦  =  𝑤  →  𝐶  =  ⦋ 𝑤  /  𝑦 ⦌ 𝐶 )  | 
						
						
							| 35 | 
							
								
							 | 
							csbeq1a | 
							⊢ ( 𝑥  =  𝑧  →  ⦋ 𝑤  /  𝑦 ⦌ 𝐶  =  ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶 )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							sylan9eqr | 
							⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝐶  =  ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶 )  | 
						
						
							| 37 | 
							
								36
							 | 
							eqeq2d | 
							⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( 𝑣  =  𝐶  ↔  𝑣  =  ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶 ) )  | 
						
						
							| 38 | 
							
								33 37
							 | 
							anbi12d | 
							⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  𝑣  =  𝐶 )  ↔  ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  ∧  𝑣  =  ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶 ) ) )  | 
						
						
							| 39 | 
							
								12 13 20 26 38
							 | 
							cbvoprab12 | 
							⊢ { 〈 〈 𝑥 ,  𝑦 〉 ,  𝑣 〉  ∣  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  𝑣  =  𝐶 ) }  =  { 〈 〈 𝑧 ,  𝑤 〉 ,  𝑣 〉  ∣  ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  ∧  𝑣  =  ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶 ) }  | 
						
						
							| 40 | 
							
								
							 | 
							df-mpo | 
							⊢ ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝐶 )  =  { 〈 〈 𝑥 ,  𝑦 〉 ,  𝑣 〉  ∣  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  𝑣  =  𝐶 ) }  | 
						
						
							| 41 | 
							
								
							 | 
							df-mpo | 
							⊢ ( 𝑧  ∈  𝐴 ,  𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶 )  =  { 〈 〈 𝑧 ,  𝑤 〉 ,  𝑣 〉  ∣  ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  ∧  𝑣  =  ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶 ) }  | 
						
						
							| 42 | 
							
								39 40 41
							 | 
							3eqtr4i | 
							⊢ ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝐶 )  =  ( 𝑧  ∈  𝐴 ,  𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶 )  | 
						
						
							| 43 | 
							
								9
							 | 
							mpomptx | 
							⊢ ( 𝑣  ∈  ∪  𝑧  ∈  𝐴 ( { 𝑧 }  ×  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  ↦  ⦋ ( 1st  ‘ 𝑣 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑣 )  /  𝑦 ⦌ 𝐶 )  =  ( 𝑧  ∈  𝐴 ,  𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ↦  ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶 )  | 
						
						
							| 44 | 
							
								42 1 43
							 | 
							3eqtr4i | 
							⊢ 𝐹  =  ( 𝑣  ∈  ∪  𝑧  ∈  𝐴 ( { 𝑧 }  ×  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  ↦  ⦋ ( 1st  ‘ 𝑣 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑣 )  /  𝑦 ⦌ 𝐶 )  | 
						
						
							| 45 | 
							
								44
							 | 
							fmpt | 
							⊢ ( ∀ 𝑣  ∈  ∪  𝑧  ∈  𝐴 ( { 𝑧 }  ×  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) ⦋ ( 1st  ‘ 𝑣 )  /  𝑥 ⦌ ⦋ ( 2nd  ‘ 𝑣 )  /  𝑦 ⦌ 𝐶  ∈  𝐷  ↔  𝐹 : ∪  𝑧  ∈  𝐴 ( { 𝑧 }  ×  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) ⟶ 𝐷 )  | 
						
						
							| 46 | 
							
								11 45
							 | 
							bitr3i | 
							⊢ ( ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶  ∈  𝐷  ↔  𝐹 : ∪  𝑧  ∈  𝐴 ( { 𝑧 }  ×  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) ⟶ 𝐷 )  | 
						
						
							| 47 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑧 ∀ 𝑦  ∈  𝐵 𝐶  ∈  𝐷  | 
						
						
							| 48 | 
							
								18
							 | 
							nfel1 | 
							⊢ Ⅎ 𝑥 ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶  ∈  𝐷  | 
						
						
							| 49 | 
							
								15 48
							 | 
							nfralw | 
							⊢ Ⅎ 𝑥 ∀ 𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶  ∈  𝐷  | 
						
						
							| 50 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑤 𝐶  ∈  𝐷  | 
						
						
							| 51 | 
							
								23
							 | 
							nfel1 | 
							⊢ Ⅎ 𝑦 ⦋ 𝑤  /  𝑦 ⦌ 𝐶  ∈  𝐷  | 
						
						
							| 52 | 
							
								34
							 | 
							eleq1d | 
							⊢ ( 𝑦  =  𝑤  →  ( 𝐶  ∈  𝐷  ↔  ⦋ 𝑤  /  𝑦 ⦌ 𝐶  ∈  𝐷 ) )  | 
						
						
							| 53 | 
							
								50 51 52
							 | 
							cbvralw | 
							⊢ ( ∀ 𝑦  ∈  𝐵 𝐶  ∈  𝐷  ↔  ∀ 𝑤  ∈  𝐵 ⦋ 𝑤  /  𝑦 ⦌ 𝐶  ∈  𝐷 )  | 
						
						
							| 54 | 
							
								35
							 | 
							eleq1d | 
							⊢ ( 𝑥  =  𝑧  →  ( ⦋ 𝑤  /  𝑦 ⦌ 𝐶  ∈  𝐷  ↔  ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶  ∈  𝐷 ) )  | 
						
						
							| 55 | 
							
								30 54
							 | 
							raleqbidv | 
							⊢ ( 𝑥  =  𝑧  →  ( ∀ 𝑤  ∈  𝐵 ⦋ 𝑤  /  𝑦 ⦌ 𝐶  ∈  𝐷  ↔  ∀ 𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶  ∈  𝐷 ) )  | 
						
						
							| 56 | 
							
								53 55
							 | 
							bitrid | 
							⊢ ( 𝑥  =  𝑧  →  ( ∀ 𝑦  ∈  𝐵 𝐶  ∈  𝐷  ↔  ∀ 𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶  ∈  𝐷 ) )  | 
						
						
							| 57 | 
							
								47 49 56
							 | 
							cbvralw | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝐶  ∈  𝐷  ↔  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ⦋ 𝑧  /  𝑥 ⦌ ⦋ 𝑤  /  𝑦 ⦌ 𝐶  ∈  𝐷 )  | 
						
						
							| 58 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑧 ( { 𝑥 }  ×  𝐵 )  | 
						
						
							| 59 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 { 𝑧 }  | 
						
						
							| 60 | 
							
								59 15
							 | 
							nfxp | 
							⊢ Ⅎ 𝑥 ( { 𝑧 }  ×  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 61 | 
							
								
							 | 
							sneq | 
							⊢ ( 𝑥  =  𝑧  →  { 𝑥 }  =  { 𝑧 } )  | 
						
						
							| 62 | 
							
								61 30
							 | 
							xpeq12d | 
							⊢ ( 𝑥  =  𝑧  →  ( { 𝑥 }  ×  𝐵 )  =  ( { 𝑧 }  ×  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) )  | 
						
						
							| 63 | 
							
								58 60 62
							 | 
							cbviun | 
							⊢ ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 )  =  ∪  𝑧  ∈  𝐴 ( { 𝑧 }  ×  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 64 | 
							
								63
							 | 
							feq2i | 
							⊢ ( 𝐹 : ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ⟶ 𝐷  ↔  𝐹 : ∪  𝑧  ∈  𝐴 ( { 𝑧 }  ×  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) ⟶ 𝐷 )  | 
						
						
							| 65 | 
							
								46 57 64
							 | 
							3bitr4i | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝐶  ∈  𝐷  ↔  𝐹 : ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  𝐵 ) ⟶ 𝐷 )  |