| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmpt.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 2 |
1
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → 𝐹 Fn 𝐴 ) |
| 3 |
1
|
rnmpt |
⊢ ran 𝐹 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 } |
| 4 |
|
r19.29 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) → ∃ 𝑥 ∈ 𝐴 ( 𝐶 ∈ 𝐵 ∧ 𝑦 = 𝐶 ) ) |
| 5 |
|
eleq1 |
⊢ ( 𝑦 = 𝐶 → ( 𝑦 ∈ 𝐵 ↔ 𝐶 ∈ 𝐵 ) ) |
| 6 |
5
|
biimparc |
⊢ ( ( 𝐶 ∈ 𝐵 ∧ 𝑦 = 𝐶 ) → 𝑦 ∈ 𝐵 ) |
| 7 |
6
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐶 ∈ 𝐵 ∧ 𝑦 = 𝐶 ) → 𝑦 ∈ 𝐵 ) |
| 8 |
4 7
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) → 𝑦 ∈ 𝐵 ) |
| 9 |
8
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 → 𝑦 ∈ 𝐵 ) ) |
| 10 |
9
|
abssdv |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 } ⊆ 𝐵 ) |
| 11 |
3 10
|
eqsstrid |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ran 𝐹 ⊆ 𝐵 ) |
| 12 |
|
df-f |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵 ) ) |
| 13 |
2 11 12
|
sylanbrc |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 14 |
|
fimacnv |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ◡ 𝐹 “ 𝐵 ) = 𝐴 ) |
| 15 |
1
|
mptpreima |
⊢ ( ◡ 𝐹 “ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ 𝐶 ∈ 𝐵 } |
| 16 |
14 15
|
eqtr3di |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐴 = { 𝑥 ∈ 𝐴 ∣ 𝐶 ∈ 𝐵 } ) |
| 17 |
|
rabid2 |
⊢ ( 𝐴 = { 𝑥 ∈ 𝐴 ∣ 𝐶 ∈ 𝐵 } ↔ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) |
| 18 |
16 17
|
sylib |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) |
| 19 |
13 18
|
impbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) |