Metamath Proof Explorer


Theorem fmpt

Description: Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis fmpt.1 𝐹 = ( 𝑥𝐴𝐶 )
Assertion fmpt ( ∀ 𝑥𝐴 𝐶𝐵𝐹 : 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 fmpt.1 𝐹 = ( 𝑥𝐴𝐶 )
2 1 fnmpt ( ∀ 𝑥𝐴 𝐶𝐵𝐹 Fn 𝐴 )
3 1 rnmpt ran 𝐹 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐶 }
4 r19.29 ( ( ∀ 𝑥𝐴 𝐶𝐵 ∧ ∃ 𝑥𝐴 𝑦 = 𝐶 ) → ∃ 𝑥𝐴 ( 𝐶𝐵𝑦 = 𝐶 ) )
5 eleq1 ( 𝑦 = 𝐶 → ( 𝑦𝐵𝐶𝐵 ) )
6 5 biimparc ( ( 𝐶𝐵𝑦 = 𝐶 ) → 𝑦𝐵 )
7 6 rexlimivw ( ∃ 𝑥𝐴 ( 𝐶𝐵𝑦 = 𝐶 ) → 𝑦𝐵 )
8 4 7 syl ( ( ∀ 𝑥𝐴 𝐶𝐵 ∧ ∃ 𝑥𝐴 𝑦 = 𝐶 ) → 𝑦𝐵 )
9 8 ex ( ∀ 𝑥𝐴 𝐶𝐵 → ( ∃ 𝑥𝐴 𝑦 = 𝐶𝑦𝐵 ) )
10 9 abssdv ( ∀ 𝑥𝐴 𝐶𝐵 → { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐶 } ⊆ 𝐵 )
11 3 10 eqsstrid ( ∀ 𝑥𝐴 𝐶𝐵 → ran 𝐹𝐵 )
12 df-f ( 𝐹 : 𝐴𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ran 𝐹𝐵 ) )
13 2 11 12 sylanbrc ( ∀ 𝑥𝐴 𝐶𝐵𝐹 : 𝐴𝐵 )
14 fimacnv ( 𝐹 : 𝐴𝐵 → ( 𝐹𝐵 ) = 𝐴 )
15 1 mptpreima ( 𝐹𝐵 ) = { 𝑥𝐴𝐶𝐵 }
16 14 15 eqtr3di ( 𝐹 : 𝐴𝐵𝐴 = { 𝑥𝐴𝐶𝐵 } )
17 rabid2 ( 𝐴 = { 𝑥𝐴𝐶𝐵 } ↔ ∀ 𝑥𝐴 𝐶𝐵 )
18 16 17 sylib ( 𝐹 : 𝐴𝐵 → ∀ 𝑥𝐴 𝐶𝐵 )
19 13 18 impbii ( ∀ 𝑥𝐴 𝐶𝐵𝐹 : 𝐴𝐵 )