| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmpt2d.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 2 |  | fmpt2d.1 | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 3 |  | fmpt2d.3 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝐶 ) | 
						
							| 4 | 1 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝑉 ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 6 | 5 | fnmpt | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝑉  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴 ) | 
						
							| 7 | 4 6 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴 ) | 
						
							| 8 | 2 | fneq1d | ⊢ ( 𝜑  →  ( 𝐹  Fn  𝐴  ↔  ( 𝑥  ∈  𝐴  ↦  𝐵 )  Fn  𝐴 ) ) | 
						
							| 9 | 7 8 | mpbird | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 10 | 3 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  ∈  𝐶 ) | 
						
							| 11 |  | ffnfv | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐶  ↔  ( 𝐹  Fn  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝐹 ‘ 𝑦 )  ∈  𝐶 ) ) | 
						
							| 12 | 9 10 11 | sylanbrc | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐶 ) |