Metamath Proof Explorer


Theorem fmpt3d

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017)

Ref Expression
Hypotheses fmpt3d.1 ( 𝜑𝐹 = ( 𝑥𝐴𝐵 ) )
fmpt3d.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
Assertion fmpt3d ( 𝜑𝐹 : 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 fmpt3d.1 ( 𝜑𝐹 = ( 𝑥𝐴𝐵 ) )
2 fmpt3d.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
3 2 fmpttd ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴𝐶 )
4 1 feq1d ( 𝜑 → ( 𝐹 : 𝐴𝐶 ↔ ( 𝑥𝐴𝐵 ) : 𝐴𝐶 ) )
5 3 4 mpbird ( 𝜑𝐹 : 𝐴𝐶 )