Step |
Hyp |
Ref |
Expression |
1 |
|
fmptapd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
fmptapd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
fmptapd.s |
⊢ ( 𝜑 → ( 𝑅 ∪ { 𝐴 } ) = 𝑆 ) |
4 |
|
fmptapd.c |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐶 = 𝐵 ) |
5 |
4 1 2
|
fmptsnd |
⊢ ( 𝜑 → { 〈 𝐴 , 𝐵 〉 } = ( 𝑥 ∈ { 𝐴 } ↦ 𝐶 ) ) |
6 |
5
|
uneq2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑅 ↦ 𝐶 ) ∪ { 〈 𝐴 , 𝐵 〉 } ) = ( ( 𝑥 ∈ 𝑅 ↦ 𝐶 ) ∪ ( 𝑥 ∈ { 𝐴 } ↦ 𝐶 ) ) ) |
7 |
|
mptun |
⊢ ( 𝑥 ∈ ( 𝑅 ∪ { 𝐴 } ) ↦ 𝐶 ) = ( ( 𝑥 ∈ 𝑅 ↦ 𝐶 ) ∪ ( 𝑥 ∈ { 𝐴 } ↦ 𝐶 ) ) |
8 |
7
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑅 ∪ { 𝐴 } ) ↦ 𝐶 ) = ( ( 𝑥 ∈ 𝑅 ↦ 𝐶 ) ∪ ( 𝑥 ∈ { 𝐴 } ↦ 𝐶 ) ) ) |
9 |
3
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑅 ∪ { 𝐴 } ) ↦ 𝐶 ) = ( 𝑥 ∈ 𝑆 ↦ 𝐶 ) ) |
10 |
6 8 9
|
3eqtr2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑅 ↦ 𝐶 ) ∪ { 〈 𝐴 , 𝐵 〉 } ) = ( 𝑥 ∈ 𝑆 ↦ 𝐶 ) ) |