| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmptco1f1o.a | ⊢ 𝐴  =  ( 𝑅  ↑m  𝐸 ) | 
						
							| 2 |  | fmptco1f1o.b | ⊢ 𝐵  =  ( 𝑅  ↑m  𝐷 ) | 
						
							| 3 |  | fmptco1f1o.f | ⊢ 𝐹  =  ( 𝑓  ∈  𝐴  ↦  ( 𝑓  ∘  𝑇 ) ) | 
						
							| 4 |  | fmptco1f1o.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 5 |  | fmptco1f1o.e | ⊢ ( 𝜑  →  𝐸  ∈  𝑊 ) | 
						
							| 6 |  | fmptco1f1o.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑋 ) | 
						
							| 7 |  | fmptco1f1o.t | ⊢ ( 𝜑  →  𝑇 : 𝐷 –1-1-onto→ 𝐸 ) | 
						
							| 8 | 3 | a1i | ⊢ ( 𝜑  →  𝐹  =  ( 𝑓  ∈  𝐴  ↦  ( 𝑓  ∘  𝑇 ) ) ) | 
						
							| 9 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑅  ∈  𝑋 ) | 
						
							| 10 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝐷  ∈  𝑉 ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓  ∈  𝐴 ) | 
						
							| 12 | 11 1 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓  ∈  ( 𝑅  ↑m  𝐸 ) ) | 
						
							| 13 |  | elmapi | ⊢ ( 𝑓  ∈  ( 𝑅  ↑m  𝐸 )  →  𝑓 : 𝐸 ⟶ 𝑅 ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝐸 ⟶ 𝑅 ) | 
						
							| 15 |  | f1of | ⊢ ( 𝑇 : 𝐷 –1-1-onto→ 𝐸  →  𝑇 : 𝐷 ⟶ 𝐸 ) | 
						
							| 16 | 7 15 | syl | ⊢ ( 𝜑  →  𝑇 : 𝐷 ⟶ 𝐸 ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑇 : 𝐷 ⟶ 𝐸 ) | 
						
							| 18 |  | fco | ⊢ ( ( 𝑓 : 𝐸 ⟶ 𝑅  ∧  𝑇 : 𝐷 ⟶ 𝐸 )  →  ( 𝑓  ∘  𝑇 ) : 𝐷 ⟶ 𝑅 ) | 
						
							| 19 | 14 17 18 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  ( 𝑓  ∘  𝑇 ) : 𝐷 ⟶ 𝑅 ) | 
						
							| 20 |  | elmapg | ⊢ ( ( 𝑅  ∈  𝑋  ∧  𝐷  ∈  𝑉 )  →  ( ( 𝑓  ∘  𝑇 )  ∈  ( 𝑅  ↑m  𝐷 )  ↔  ( 𝑓  ∘  𝑇 ) : 𝐷 ⟶ 𝑅 ) ) | 
						
							| 21 | 20 | biimpar | ⊢ ( ( ( 𝑅  ∈  𝑋  ∧  𝐷  ∈  𝑉 )  ∧  ( 𝑓  ∘  𝑇 ) : 𝐷 ⟶ 𝑅 )  →  ( 𝑓  ∘  𝑇 )  ∈  ( 𝑅  ↑m  𝐷 ) ) | 
						
							| 22 | 9 10 19 21 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  ( 𝑓  ∘  𝑇 )  ∈  ( 𝑅  ↑m  𝐷 ) ) | 
						
							| 23 | 22 2 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  ( 𝑓  ∘  𝑇 )  ∈  𝐵 ) | 
						
							| 24 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  𝑅  ∈  𝑋 ) | 
						
							| 25 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  𝐸  ∈  𝑊 ) | 
						
							| 26 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  𝑔  ∈  𝐵 ) | 
						
							| 27 | 26 2 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  𝑔  ∈  ( 𝑅  ↑m  𝐷 ) ) | 
						
							| 28 |  | elmapi | ⊢ ( 𝑔  ∈  ( 𝑅  ↑m  𝐷 )  →  𝑔 : 𝐷 ⟶ 𝑅 ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  𝑔 : 𝐷 ⟶ 𝑅 ) | 
						
							| 30 |  | f1ocnv | ⊢ ( 𝑇 : 𝐷 –1-1-onto→ 𝐸  →  ◡ 𝑇 : 𝐸 –1-1-onto→ 𝐷 ) | 
						
							| 31 |  | f1of | ⊢ ( ◡ 𝑇 : 𝐸 –1-1-onto→ 𝐷  →  ◡ 𝑇 : 𝐸 ⟶ 𝐷 ) | 
						
							| 32 | 7 30 31 | 3syl | ⊢ ( 𝜑  →  ◡ 𝑇 : 𝐸 ⟶ 𝐷 ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  ◡ 𝑇 : 𝐸 ⟶ 𝐷 ) | 
						
							| 34 |  | fco | ⊢ ( ( 𝑔 : 𝐷 ⟶ 𝑅  ∧  ◡ 𝑇 : 𝐸 ⟶ 𝐷 )  →  ( 𝑔  ∘  ◡ 𝑇 ) : 𝐸 ⟶ 𝑅 ) | 
						
							| 35 | 29 33 34 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  ( 𝑔  ∘  ◡ 𝑇 ) : 𝐸 ⟶ 𝑅 ) | 
						
							| 36 |  | elmapg | ⊢ ( ( 𝑅  ∈  𝑋  ∧  𝐸  ∈  𝑊 )  →  ( ( 𝑔  ∘  ◡ 𝑇 )  ∈  ( 𝑅  ↑m  𝐸 )  ↔  ( 𝑔  ∘  ◡ 𝑇 ) : 𝐸 ⟶ 𝑅 ) ) | 
						
							| 37 | 36 | biimpar | ⊢ ( ( ( 𝑅  ∈  𝑋  ∧  𝐸  ∈  𝑊 )  ∧  ( 𝑔  ∘  ◡ 𝑇 ) : 𝐸 ⟶ 𝑅 )  →  ( 𝑔  ∘  ◡ 𝑇 )  ∈  ( 𝑅  ↑m  𝐸 ) ) | 
						
							| 38 | 24 25 35 37 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  ( 𝑔  ∘  ◡ 𝑇 )  ∈  ( 𝑅  ↑m  𝐸 ) ) | 
						
							| 39 | 38 1 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  ( 𝑔  ∘  ◡ 𝑇 )  ∈  𝐴 ) | 
						
							| 40 |  | coass | ⊢ ( ( 𝑔  ∘  ◡ 𝑇 )  ∘  𝑇 )  =  ( 𝑔  ∘  ( ◡ 𝑇  ∘  𝑇 ) ) | 
						
							| 41 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑔  ∈  𝐵 )  →  𝑇 : 𝐷 –1-1-onto→ 𝐸 ) | 
						
							| 42 |  | f1ococnv1 | ⊢ ( 𝑇 : 𝐷 –1-1-onto→ 𝐸  →  ( ◡ 𝑇  ∘  𝑇 )  =  (  I   ↾  𝐷 ) ) | 
						
							| 43 | 42 | coeq2d | ⊢ ( 𝑇 : 𝐷 –1-1-onto→ 𝐸  →  ( 𝑔  ∘  ( ◡ 𝑇  ∘  𝑇 ) )  =  ( 𝑔  ∘  (  I   ↾  𝐷 ) ) ) | 
						
							| 44 | 41 43 | syl | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑔  ∈  𝐵 )  →  ( 𝑔  ∘  ( ◡ 𝑇  ∘  𝑇 ) )  =  ( 𝑔  ∘  (  I   ↾  𝐷 ) ) ) | 
						
							| 45 | 29 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑔  ∈  𝐵 )  →  𝑔 : 𝐷 ⟶ 𝑅 ) | 
						
							| 46 |  | fcoi1 | ⊢ ( 𝑔 : 𝐷 ⟶ 𝑅  →  ( 𝑔  ∘  (  I   ↾  𝐷 ) )  =  𝑔 ) | 
						
							| 47 | 45 46 | syl | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑔  ∈  𝐵 )  →  ( 𝑔  ∘  (  I   ↾  𝐷 ) )  =  𝑔 ) | 
						
							| 48 | 44 47 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑔  ∈  𝐵 )  →  ( 𝑔  ∘  ( ◡ 𝑇  ∘  𝑇 ) )  =  𝑔 ) | 
						
							| 49 | 40 48 | eqtr2id | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑔  ∈  𝐵 )  →  𝑔  =  ( ( 𝑔  ∘  ◡ 𝑇 )  ∘  𝑇 ) ) | 
						
							| 50 | 49 | eqeq1d | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑔  ∈  𝐵 )  →  ( 𝑔  =  ( 𝑓  ∘  𝑇 )  ↔  ( ( 𝑔  ∘  ◡ 𝑇 )  ∘  𝑇 )  =  ( 𝑓  ∘  𝑇 ) ) ) | 
						
							| 51 |  | eqcom | ⊢ ( ( ( 𝑔  ∘  ◡ 𝑇 )  ∘  𝑇 )  =  ( 𝑓  ∘  𝑇 )  ↔  ( 𝑓  ∘  𝑇 )  =  ( ( 𝑔  ∘  ◡ 𝑇 )  ∘  𝑇 ) ) | 
						
							| 52 | 51 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑔  ∈  𝐵 )  →  ( ( ( 𝑔  ∘  ◡ 𝑇 )  ∘  𝑇 )  =  ( 𝑓  ∘  𝑇 )  ↔  ( 𝑓  ∘  𝑇 )  =  ( ( 𝑔  ∘  ◡ 𝑇 )  ∘  𝑇 ) ) ) | 
						
							| 53 |  | f1ofo | ⊢ ( 𝑇 : 𝐷 –1-1-onto→ 𝐸  →  𝑇 : 𝐷 –onto→ 𝐸 ) | 
						
							| 54 | 41 53 | syl | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑔  ∈  𝐵 )  →  𝑇 : 𝐷 –onto→ 𝐸 ) | 
						
							| 55 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑔  ∈  𝐵 )  →  𝑓  ∈  𝐴 ) | 
						
							| 56 | 55 1 | eleqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑔  ∈  𝐵 )  →  𝑓  ∈  ( 𝑅  ↑m  𝐸 ) ) | 
						
							| 57 |  | elmapfn | ⊢ ( 𝑓  ∈  ( 𝑅  ↑m  𝐸 )  →  𝑓  Fn  𝐸 ) | 
						
							| 58 | 56 57 | syl | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑔  ∈  𝐵 )  →  𝑓  Fn  𝐸 ) | 
						
							| 59 |  | elmapfn | ⊢ ( ( 𝑔  ∘  ◡ 𝑇 )  ∈  ( 𝑅  ↑m  𝐸 )  →  ( 𝑔  ∘  ◡ 𝑇 )  Fn  𝐸 ) | 
						
							| 60 | 38 59 | syl | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  ( 𝑔  ∘  ◡ 𝑇 )  Fn  𝐸 ) | 
						
							| 61 | 60 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑔  ∈  𝐵 )  →  ( 𝑔  ∘  ◡ 𝑇 )  Fn  𝐸 ) | 
						
							| 62 |  | cocan2 | ⊢ ( ( 𝑇 : 𝐷 –onto→ 𝐸  ∧  𝑓  Fn  𝐸  ∧  ( 𝑔  ∘  ◡ 𝑇 )  Fn  𝐸 )  →  ( ( 𝑓  ∘  𝑇 )  =  ( ( 𝑔  ∘  ◡ 𝑇 )  ∘  𝑇 )  ↔  𝑓  =  ( 𝑔  ∘  ◡ 𝑇 ) ) ) | 
						
							| 63 | 54 58 61 62 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑔  ∈  𝐵 )  →  ( ( 𝑓  ∘  𝑇 )  =  ( ( 𝑔  ∘  ◡ 𝑇 )  ∘  𝑇 )  ↔  𝑓  =  ( 𝑔  ∘  ◡ 𝑇 ) ) ) | 
						
							| 64 | 50 52 63 | 3bitrrd | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ∧  𝑔  ∈  𝐵 )  →  ( 𝑓  =  ( 𝑔  ∘  ◡ 𝑇 )  ↔  𝑔  =  ( 𝑓  ∘  𝑇 ) ) ) | 
						
							| 65 | 64 | anasss | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐵 ) )  →  ( 𝑓  =  ( 𝑔  ∘  ◡ 𝑇 )  ↔  𝑔  =  ( 𝑓  ∘  𝑇 ) ) ) | 
						
							| 66 | 8 23 39 65 | f1o3d | ⊢ ( 𝜑  →  ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  ◡ 𝐹  =  ( 𝑔  ∈  𝐵  ↦  ( 𝑔  ∘  ◡ 𝑇 ) ) ) ) | 
						
							| 67 | 66 | simpld | ⊢ ( 𝜑  →  𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |