| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmptcof.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑅 ∈ 𝐵 ) |
| 2 |
|
fmptcof.2 |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) |
| 3 |
|
fmptcof.3 |
⊢ ( 𝜑 → 𝐺 = ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ) |
| 4 |
|
fmptcof.4 |
⊢ ( 𝑦 = 𝑅 → 𝑆 = 𝑇 ) |
| 5 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝑅 |
| 6 |
5
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝑅 ∈ 𝐵 |
| 7 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑧 → 𝑅 = ⦋ 𝑧 / 𝑥 ⦌ 𝑅 ) |
| 8 |
7
|
eleq1d |
⊢ ( 𝑥 = 𝑧 → ( 𝑅 ∈ 𝐵 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝑅 ∈ 𝐵 ) ) |
| 9 |
6 8
|
rspc |
⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 𝑅 ∈ 𝐵 → ⦋ 𝑧 / 𝑥 ⦌ 𝑅 ∈ 𝐵 ) ) |
| 10 |
1 9
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑥 ⦌ 𝑅 ∈ 𝐵 ) |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑅 |
| 12 |
11 5 7
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) = ( 𝑧 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑥 ⦌ 𝑅 ) |
| 13 |
2 12
|
eqtrdi |
⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ 𝐴 ↦ ⦋ 𝑧 / 𝑥 ⦌ 𝑅 ) ) |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑤 𝑆 |
| 15 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑤 / 𝑦 ⦌ 𝑆 |
| 16 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑤 → 𝑆 = ⦋ 𝑤 / 𝑦 ⦌ 𝑆 ) |
| 17 |
14 15 16
|
cbvmpt |
⊢ ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) = ( 𝑤 ∈ 𝐵 ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑆 ) |
| 18 |
3 17
|
eqtrdi |
⊢ ( 𝜑 → 𝐺 = ( 𝑤 ∈ 𝐵 ↦ ⦋ 𝑤 / 𝑦 ⦌ 𝑆 ) ) |
| 19 |
|
csbeq1 |
⊢ ( 𝑤 = ⦋ 𝑧 / 𝑥 ⦌ 𝑅 → ⦋ 𝑤 / 𝑦 ⦌ 𝑆 = ⦋ ⦋ 𝑧 / 𝑥 ⦌ 𝑅 / 𝑦 ⦌ 𝑆 ) |
| 20 |
10 13 18 19
|
fmptco |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( 𝑧 ∈ 𝐴 ↦ ⦋ ⦋ 𝑧 / 𝑥 ⦌ 𝑅 / 𝑦 ⦌ 𝑆 ) ) |
| 21 |
|
nfcv |
⊢ Ⅎ 𝑧 ⦋ 𝑅 / 𝑦 ⦌ 𝑆 |
| 22 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑆 |
| 23 |
5 22
|
nfcsbw |
⊢ Ⅎ 𝑥 ⦋ ⦋ 𝑧 / 𝑥 ⦌ 𝑅 / 𝑦 ⦌ 𝑆 |
| 24 |
7
|
csbeq1d |
⊢ ( 𝑥 = 𝑧 → ⦋ 𝑅 / 𝑦 ⦌ 𝑆 = ⦋ ⦋ 𝑧 / 𝑥 ⦌ 𝑅 / 𝑦 ⦌ 𝑆 ) |
| 25 |
21 23 24
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑅 / 𝑦 ⦌ 𝑆 ) = ( 𝑧 ∈ 𝐴 ↦ ⦋ ⦋ 𝑧 / 𝑥 ⦌ 𝑅 / 𝑦 ⦌ 𝑆 ) |
| 26 |
20 25
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑅 / 𝑦 ⦌ 𝑆 ) ) |
| 27 |
|
eqid |
⊢ 𝐴 = 𝐴 |
| 28 |
|
nfcvd |
⊢ ( 𝑅 ∈ 𝐵 → Ⅎ 𝑦 𝑇 ) |
| 29 |
28 4
|
csbiegf |
⊢ ( 𝑅 ∈ 𝐵 → ⦋ 𝑅 / 𝑦 ⦌ 𝑆 = 𝑇 ) |
| 30 |
29
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑅 ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 ⦋ 𝑅 / 𝑦 ⦌ 𝑆 = 𝑇 ) |
| 31 |
|
mpteq12 |
⊢ ( ( 𝐴 = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ⦋ 𝑅 / 𝑦 ⦌ 𝑆 = 𝑇 ) → ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑅 / 𝑦 ⦌ 𝑆 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ) |
| 32 |
27 30 31
|
sylancr |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑅 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑅 / 𝑦 ⦌ 𝑆 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ) |
| 33 |
1 32
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑅 / 𝑦 ⦌ 𝑆 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ) |
| 34 |
26 33
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ) |