Description: Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmptcof.1 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑅 ∈ 𝐵 ) | |
| fmptcof.2 | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) | ||
| fmptcof.3 | ⊢ ( 𝜑 → 𝐺 = ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ) | ||
| Assertion | fmptcos | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑅 / 𝑦 ⦌ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptcof.1 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑅 ∈ 𝐵 ) | |
| 2 | fmptcof.2 | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) | |
| 3 | fmptcof.3 | ⊢ ( 𝜑 → 𝐺 = ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑧 𝑆 | |
| 5 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑧 / 𝑦 ⦌ 𝑆 | |
| 6 | csbeq1a | ⊢ ( 𝑦 = 𝑧 → 𝑆 = ⦋ 𝑧 / 𝑦 ⦌ 𝑆 ) | |
| 7 | 4 5 6 | cbvmpt | ⊢ ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) = ( 𝑧 ∈ 𝐵 ↦ ⦋ 𝑧 / 𝑦 ⦌ 𝑆 ) |
| 8 | 3 7 | eqtrdi | ⊢ ( 𝜑 → 𝐺 = ( 𝑧 ∈ 𝐵 ↦ ⦋ 𝑧 / 𝑦 ⦌ 𝑆 ) ) |
| 9 | csbeq1 | ⊢ ( 𝑧 = 𝑅 → ⦋ 𝑧 / 𝑦 ⦌ 𝑆 = ⦋ 𝑅 / 𝑦 ⦌ 𝑆 ) | |
| 10 | 1 2 8 9 | fmptcof | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ⦋ 𝑅 / 𝑦 ⦌ 𝑆 ) ) |