Metamath Proof Explorer


Theorem fmptd2f

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fmptd2f.1 𝑥 𝜑
fmptd2f.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
Assertion fmptd2f ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 fmptd2f.1 𝑥 𝜑
2 fmptd2f.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
3 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
4 1 2 3 fmptdf ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴𝐶 )