Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fmptdf
Metamath Proof Explorer
Description: A version of fmptd using bound-variable hypothesis instead of a
distinct variable condition for ph . (Contributed by Glauco
Siliprandi , 29-Jun-2017)
Ref
Expression
Hypotheses
fmptdf.1
⊢ Ⅎ 𝑥 𝜑
fmptdf.2
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 )
fmptdf.3
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 )
Assertion
fmptdf
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 )
Proof
Step
Hyp
Ref
Expression
1
fmptdf.1
⊢ Ⅎ 𝑥 𝜑
2
fmptdf.2
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 )
3
fmptdf.3
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 )
4
2
ex
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶 ) )
5
1 4
ralrimi
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 )
6
3
fmpt
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹 : 𝐴 ⟶ 𝐶 )
7
5 6
sylib
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 )