Metamath Proof Explorer


Theorem fmptdf

Description: A version of fmptd using bound-variable hypothesis instead of a distinct variable condition for ph . (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses fmptdf.1 𝑥 𝜑
fmptdf.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
fmptdf.3 𝐹 = ( 𝑥𝐴𝐵 )
Assertion fmptdf ( 𝜑𝐹 : 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 fmptdf.1 𝑥 𝜑
2 fmptdf.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
3 fmptdf.3 𝐹 = ( 𝑥𝐴𝐵 )
4 2 ex ( 𝜑 → ( 𝑥𝐴𝐵𝐶 ) )
5 1 4 ralrimi ( 𝜑 → ∀ 𝑥𝐴 𝐵𝐶 )
6 3 fmpt ( ∀ 𝑥𝐴 𝐵𝐶𝐹 : 𝐴𝐶 )
7 5 6 sylib ( 𝜑𝐹 : 𝐴𝐶 )