Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Functions
fmptdff
Metamath Proof Explorer
Description: A version of fmptd using bound-variable hypothesis instead of a
distinct variable condition for ph . (Contributed by Glauco
Siliprandi , 5-Jan-2025)
Ref
Expression
Hypotheses
fmptdff.1
⊢ Ⅎ 𝑥 𝜑
fmptdff.2
⊢ Ⅎ 𝑥 𝐴
fmptdff.3
⊢ Ⅎ 𝑥 𝐶
fmptdff.4
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 )
fmptdff.5
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 )
Assertion
fmptdff
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 )
Proof
Step
Hyp
Ref
Expression
1
fmptdff.1
⊢ Ⅎ 𝑥 𝜑
2
fmptdff.2
⊢ Ⅎ 𝑥 𝐴
3
fmptdff.3
⊢ Ⅎ 𝑥 𝐶
4
fmptdff.4
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 )
5
fmptdff.5
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 )
6
1 4
ralrimia
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 )
7
2 3 5
fmptff
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹 : 𝐴 ⟶ 𝐶 )
8
6 7
sylib
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 )