Metamath Proof Explorer


Theorem fmptdff

Description: A version of fmptd using bound-variable hypothesis instead of a distinct variable condition for ph . (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses fmptdff.1 𝑥 𝜑
fmptdff.2 𝑥 𝐴
fmptdff.3 𝑥 𝐶
fmptdff.4 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
fmptdff.5 𝐹 = ( 𝑥𝐴𝐵 )
Assertion fmptdff ( 𝜑𝐹 : 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 fmptdff.1 𝑥 𝜑
2 fmptdff.2 𝑥 𝐴
3 fmptdff.3 𝑥 𝐶
4 fmptdff.4 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
5 fmptdff.5 𝐹 = ( 𝑥𝐴𝐵 )
6 1 4 ralrimia ( 𝜑 → ∀ 𝑥𝐴 𝐵𝐶 )
7 2 3 5 fmptff ( ∀ 𝑥𝐴 𝐵𝐶𝐹 : 𝐴𝐶 )
8 6 7 sylib ( 𝜑𝐹 : 𝐴𝐶 )