Step |
Hyp |
Ref |
Expression |
1 |
|
fmptff.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
fmptff.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
fmptff.3 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
5 |
|
nfv |
⊢ Ⅎ 𝑦 𝐶 ∈ 𝐵 |
6 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 |
7 |
6 2
|
nfel |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∈ 𝐵 |
8 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
9 |
8
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐶 ∈ 𝐵 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∈ 𝐵 ) ) |
10 |
1 4 5 7 9
|
cbvralfw |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∈ 𝐵 ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐶 |
12 |
1 4 11 6 8
|
cbvmptf |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
13 |
3 12
|
eqtri |
⊢ 𝐹 = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
14 |
13
|
fmpt |
⊢ ( ∀ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∈ 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) |
15 |
10 14
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) |