Metamath Proof Explorer


Theorem fmptff

Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses fmptff.1 𝑥 𝐴
fmptff.2 𝑥 𝐵
fmptff.3 𝐹 = ( 𝑥𝐴𝐶 )
Assertion fmptff ( ∀ 𝑥𝐴 𝐶𝐵𝐹 : 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 fmptff.1 𝑥 𝐴
2 fmptff.2 𝑥 𝐵
3 fmptff.3 𝐹 = ( 𝑥𝐴𝐶 )
4 nfcv 𝑦 𝐴
5 nfv 𝑦 𝐶𝐵
6 nfcsb1v 𝑥 𝑦 / 𝑥 𝐶
7 6 2 nfel 𝑥 𝑦 / 𝑥 𝐶𝐵
8 csbeq1a ( 𝑥 = 𝑦𝐶 = 𝑦 / 𝑥 𝐶 )
9 8 eleq1d ( 𝑥 = 𝑦 → ( 𝐶𝐵 𝑦 / 𝑥 𝐶𝐵 ) )
10 1 4 5 7 9 cbvralfw ( ∀ 𝑥𝐴 𝐶𝐵 ↔ ∀ 𝑦𝐴 𝑦 / 𝑥 𝐶𝐵 )
11 nfcv 𝑦 𝐶
12 1 4 11 6 8 cbvmptf ( 𝑥𝐴𝐶 ) = ( 𝑦𝐴 𝑦 / 𝑥 𝐶 )
13 3 12 eqtri 𝐹 = ( 𝑦𝐴 𝑦 / 𝑥 𝐶 )
14 13 fmpt ( ∀ 𝑦𝐴 𝑦 / 𝑥 𝐶𝐵𝐹 : 𝐴𝐵 )
15 10 14 bitri ( ∀ 𝑥𝐴 𝐶𝐵𝐹 : 𝐴𝐵 )