Metamath Proof Explorer


Theorem fmptsnxp

Description: Maps-to notation and Cartesian product for a singleton function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion fmptsnxp ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝑥 ∈ { 𝐴 } ↦ 𝐵 ) = ( { 𝐴 } × { 𝐵 } ) )

Proof

Step Hyp Ref Expression
1 xpsng ( ( 𝐴𝑉𝐵𝑊 ) → ( { 𝐴 } × { 𝐵 } ) = { ⟨ 𝐴 , 𝐵 ⟩ } )
2 fmptsn ( ( 𝐴𝑉𝐵𝑊 ) → { ⟨ 𝐴 , 𝐵 ⟩ } = ( 𝑥 ∈ { 𝐴 } ↦ 𝐵 ) )
3 1 2 eqtr2d ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝑥 ∈ { 𝐴 } ↦ 𝐵 ) = ( { 𝐴 } × { 𝐵 } ) )