Description: The restriction of a mapping function has finite support if that function has finite support. (Contributed by Thierry Arnoux, 21-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmptssfisupp.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) finSupp 𝑍 ) | |
| fmptssfisupp.2 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | ||
| fmptssfisupp.3 | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
| Assertion | fmptssfisupp | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) finSupp 𝑍 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fmptssfisupp.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) finSupp 𝑍 ) | |
| 2 | fmptssfisupp.2 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | |
| 3 | fmptssfisupp.3 | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
| 4 | 2 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐶 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ) | 
| 5 | 1 3 | fsuppres | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐶 ) finSupp 𝑍 ) | 
| 6 | 4 5 | eqbrtrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) finSupp 𝑍 ) |