| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl2 | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐶  ∈  ( fBas ‘ 𝑌 ) )  ∧  ( 𝐹 : 𝑌 ⟶ 𝑋  ∧  𝐵  ⊆  𝐶 ) )  →  𝐵  ∈  ( fBas ‘ 𝑌 ) ) | 
						
							| 2 |  | simprl | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐶  ∈  ( fBas ‘ 𝑌 ) )  ∧  ( 𝐹 : 𝑌 ⟶ 𝑋  ∧  𝐵  ⊆  𝐶 ) )  →  𝐹 : 𝑌 ⟶ 𝑋 ) | 
						
							| 3 |  | simpl1 | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐶  ∈  ( fBas ‘ 𝑌 ) )  ∧  ( 𝐹 : 𝑌 ⟶ 𝑋  ∧  𝐵  ⊆  𝐶 ) )  →  𝑋  ∈  𝐴 ) | 
						
							| 4 |  | eqid | ⊢ ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  =  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) | 
						
							| 5 | 4 | fbasrn | ⊢ ( ( 𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋  ∧  𝑋  ∈  𝐴 )  →  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 6 | 1 2 3 5 | syl3anc | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐶  ∈  ( fBas ‘ 𝑌 ) )  ∧  ( 𝐹 : 𝑌 ⟶ 𝑋  ∧  𝐵  ⊆  𝐶 ) )  →  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 7 |  | simpl3 | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐶  ∈  ( fBas ‘ 𝑌 ) )  ∧  ( 𝐹 : 𝑌 ⟶ 𝑋  ∧  𝐵  ⊆  𝐶 ) )  →  𝐶  ∈  ( fBas ‘ 𝑌 ) ) | 
						
							| 8 |  | eqid | ⊢ ran  ( 𝑦  ∈  𝐶  ↦  ( 𝐹  “  𝑦 ) )  =  ran  ( 𝑦  ∈  𝐶  ↦  ( 𝐹  “  𝑦 ) ) | 
						
							| 9 | 8 | fbasrn | ⊢ ( ( 𝐶  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋  ∧  𝑋  ∈  𝐴 )  →  ran  ( 𝑦  ∈  𝐶  ↦  ( 𝐹  “  𝑦 ) )  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 10 | 7 2 3 9 | syl3anc | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐶  ∈  ( fBas ‘ 𝑌 ) )  ∧  ( 𝐹 : 𝑌 ⟶ 𝑋  ∧  𝐵  ⊆  𝐶 ) )  →  ran  ( 𝑦  ∈  𝐶  ↦  ( 𝐹  “  𝑦 ) )  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 11 |  | resmpt | ⊢ ( 𝐵  ⊆  𝐶  →  ( ( 𝑦  ∈  𝐶  ↦  ( 𝐹  “  𝑦 ) )  ↾  𝐵 )  =  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) ) | 
						
							| 12 | 11 | ad2antll | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐶  ∈  ( fBas ‘ 𝑌 ) )  ∧  ( 𝐹 : 𝑌 ⟶ 𝑋  ∧  𝐵  ⊆  𝐶 ) )  →  ( ( 𝑦  ∈  𝐶  ↦  ( 𝐹  “  𝑦 ) )  ↾  𝐵 )  =  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) ) | 
						
							| 13 |  | resss | ⊢ ( ( 𝑦  ∈  𝐶  ↦  ( 𝐹  “  𝑦 ) )  ↾  𝐵 )  ⊆  ( 𝑦  ∈  𝐶  ↦  ( 𝐹  “  𝑦 ) ) | 
						
							| 14 | 12 13 | eqsstrrdi | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐶  ∈  ( fBas ‘ 𝑌 ) )  ∧  ( 𝐹 : 𝑌 ⟶ 𝑋  ∧  𝐵  ⊆  𝐶 ) )  →  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  ⊆  ( 𝑦  ∈  𝐶  ↦  ( 𝐹  “  𝑦 ) ) ) | 
						
							| 15 |  | rnss | ⊢ ( ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  ⊆  ( 𝑦  ∈  𝐶  ↦  ( 𝐹  “  𝑦 ) )  →  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  ⊆  ran  ( 𝑦  ∈  𝐶  ↦  ( 𝐹  “  𝑦 ) ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐶  ∈  ( fBas ‘ 𝑌 ) )  ∧  ( 𝐹 : 𝑌 ⟶ 𝑋  ∧  𝐵  ⊆  𝐶 ) )  →  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  ⊆  ran  ( 𝑦  ∈  𝐶  ↦  ( 𝐹  “  𝑦 ) ) ) | 
						
							| 17 |  | fgss | ⊢ ( ( ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  ∈  ( fBas ‘ 𝑋 )  ∧  ran  ( 𝑦  ∈  𝐶  ↦  ( 𝐹  “  𝑦 ) )  ∈  ( fBas ‘ 𝑋 )  ∧  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) )  ⊆  ran  ( 𝑦  ∈  𝐶  ↦  ( 𝐹  “  𝑦 ) ) )  →  ( 𝑋 filGen ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) )  ⊆  ( 𝑋 filGen ran  ( 𝑦  ∈  𝐶  ↦  ( 𝐹  “  𝑦 ) ) ) ) | 
						
							| 18 | 6 10 16 17 | syl3anc | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐶  ∈  ( fBas ‘ 𝑌 ) )  ∧  ( 𝐹 : 𝑌 ⟶ 𝑋  ∧  𝐵  ⊆  𝐶 ) )  →  ( 𝑋 filGen ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) )  ⊆  ( 𝑋 filGen ran  ( 𝑦  ∈  𝐶  ↦  ( 𝐹  “  𝑦 ) ) ) ) | 
						
							| 19 |  | fmval | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  =  ( 𝑋 filGen ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) ) ) | 
						
							| 20 | 3 1 2 19 | syl3anc | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐶  ∈  ( fBas ‘ 𝑌 ) )  ∧  ( 𝐹 : 𝑌 ⟶ 𝑋  ∧  𝐵  ⊆  𝐶 ) )  →  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  =  ( 𝑋 filGen ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) ) ) | 
						
							| 21 |  | fmval | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝐶  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐶 )  =  ( 𝑋 filGen ran  ( 𝑦  ∈  𝐶  ↦  ( 𝐹  “  𝑦 ) ) ) ) | 
						
							| 22 | 3 7 2 21 | syl3anc | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐶  ∈  ( fBas ‘ 𝑌 ) )  ∧  ( 𝐹 : 𝑌 ⟶ 𝑋  ∧  𝐵  ⊆  𝐶 ) )  →  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐶 )  =  ( 𝑋 filGen ran  ( 𝑦  ∈  𝐶  ↦  ( 𝐹  “  𝑦 ) ) ) ) | 
						
							| 23 | 18 20 22 | 3sstr4d | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐶  ∈  ( fBas ‘ 𝑌 ) )  ∧  ( 𝐹 : 𝑌 ⟶ 𝑋  ∧  𝐵  ⊆  𝐶 ) )  →  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  ⊆  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐶 ) ) |