Step |
Hyp |
Ref |
Expression |
1 |
|
simpl2 |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → 𝐵 ∈ ( fBas ‘ 𝑌 ) ) |
2 |
|
simprl |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → 𝐹 : 𝑌 ⟶ 𝑋 ) |
3 |
|
simpl1 |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → 𝑋 ∈ 𝐴 ) |
4 |
|
eqid |
⊢ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) = ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) |
5 |
4
|
fbasrn |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑋 ∈ 𝐴 ) → ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
6 |
1 2 3 5
|
syl3anc |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
7 |
|
simpl3 |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → 𝐶 ∈ ( fBas ‘ 𝑌 ) ) |
8 |
|
eqid |
⊢ ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) = ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) |
9 |
8
|
fbasrn |
⊢ ( ( 𝐶 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑋 ∈ 𝐴 ) → ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
10 |
7 2 3 9
|
syl3anc |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
11 |
|
resmpt |
⊢ ( 𝐵 ⊆ 𝐶 → ( ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ↾ 𝐵 ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) |
12 |
11
|
ad2antll |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → ( ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ↾ 𝐵 ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) |
13 |
|
resss |
⊢ ( ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ↾ 𝐵 ) ⊆ ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) |
14 |
12 13
|
eqsstrrdi |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ⊆ ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ) |
15 |
|
rnss |
⊢ ( ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ⊆ ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) → ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ⊆ ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ) |
16 |
14 15
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ⊆ ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ) |
17 |
|
fgss |
⊢ ( ( ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ∧ ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ∧ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ⊆ ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ) → ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ⊆ ( 𝑋 filGen ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
18 |
6 10 16 17
|
syl3anc |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ⊆ ( 𝑋 filGen ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
19 |
|
fmval |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
20 |
3 1 2 19
|
syl3anc |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
21 |
|
fmval |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐶 ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
22 |
3 7 2 21
|
syl3anc |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐶 ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝐶 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
23 |
18 20 22
|
3sstr4d |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑌 ) ) ∧ ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝐵 ⊆ 𝐶 ) ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ⊆ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐶 ) ) |