Step |
Hyp |
Ref |
Expression |
1 |
|
fmucnd.1 |
⊢ ( 𝜑 → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
2 |
|
fmucnd.2 |
⊢ ( 𝜑 → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) |
3 |
|
fmucnd.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ) |
4 |
|
fmucnd.4 |
⊢ ( 𝜑 → 𝐶 ∈ ( CauFilu ‘ 𝑈 ) ) |
5 |
|
fmucnd.5 |
⊢ 𝐷 = ran ( 𝑎 ∈ 𝐶 ↦ ( 𝐹 “ 𝑎 ) ) |
6 |
|
cfilufbas |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ 𝑈 ) ) → 𝐶 ∈ ( fBas ‘ 𝑋 ) ) |
7 |
1 4 6
|
syl2anc |
⊢ ( 𝜑 → 𝐶 ∈ ( fBas ‘ 𝑋 ) ) |
8 |
|
isucn |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
9 |
8
|
simprbda |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
10 |
1 2 3 9
|
syl21anc |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
11 |
2
|
elfvexd |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
12 |
5
|
fbasrn |
⊢ ( ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ V ) → 𝐷 ∈ ( fBas ‘ 𝑌 ) ) |
13 |
7 10 11 12
|
syl3anc |
⊢ ( 𝜑 → 𝐷 ∈ ( fBas ‘ 𝑌 ) ) |
14 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → 𝑎 ∈ 𝐶 ) |
15 |
|
eqid |
⊢ ( 𝐹 “ 𝑎 ) = ( 𝐹 “ 𝑎 ) |
16 |
|
imaeq2 |
⊢ ( 𝑐 = 𝑎 → ( 𝐹 “ 𝑐 ) = ( 𝐹 “ 𝑎 ) ) |
17 |
16
|
rspceeqv |
⊢ ( ( 𝑎 ∈ 𝐶 ∧ ( 𝐹 “ 𝑎 ) = ( 𝐹 “ 𝑎 ) ) → ∃ 𝑐 ∈ 𝐶 ( 𝐹 “ 𝑎 ) = ( 𝐹 “ 𝑐 ) ) |
18 |
14 15 17
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → ∃ 𝑐 ∈ 𝐶 ( 𝐹 “ 𝑎 ) = ( 𝐹 “ 𝑐 ) ) |
19 |
|
imaexg |
⊢ ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) → ( 𝐹 “ 𝑎 ) ∈ V ) |
20 |
|
eqid |
⊢ ( 𝑐 ∈ 𝐶 ↦ ( 𝐹 “ 𝑐 ) ) = ( 𝑐 ∈ 𝐶 ↦ ( 𝐹 “ 𝑐 ) ) |
21 |
20
|
elrnmpt |
⊢ ( ( 𝐹 “ 𝑎 ) ∈ V → ( ( 𝐹 “ 𝑎 ) ∈ ran ( 𝑐 ∈ 𝐶 ↦ ( 𝐹 “ 𝑐 ) ) ↔ ∃ 𝑐 ∈ 𝐶 ( 𝐹 “ 𝑎 ) = ( 𝐹 “ 𝑐 ) ) ) |
22 |
3 19 21
|
3syl |
⊢ ( 𝜑 → ( ( 𝐹 “ 𝑎 ) ∈ ran ( 𝑐 ∈ 𝐶 ↦ ( 𝐹 “ 𝑐 ) ) ↔ ∃ 𝑐 ∈ 𝐶 ( 𝐹 “ 𝑎 ) = ( 𝐹 “ 𝑐 ) ) ) |
23 |
22
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → ( ( 𝐹 “ 𝑎 ) ∈ ran ( 𝑐 ∈ 𝐶 ↦ ( 𝐹 “ 𝑐 ) ) ↔ ∃ 𝑐 ∈ 𝐶 ( 𝐹 “ 𝑎 ) = ( 𝐹 “ 𝑐 ) ) ) |
24 |
18 23
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → ( 𝐹 “ 𝑎 ) ∈ ran ( 𝑐 ∈ 𝐶 ↦ ( 𝐹 “ 𝑐 ) ) ) |
25 |
|
imaeq2 |
⊢ ( 𝑎 = 𝑐 → ( 𝐹 “ 𝑎 ) = ( 𝐹 “ 𝑐 ) ) |
26 |
25
|
cbvmptv |
⊢ ( 𝑎 ∈ 𝐶 ↦ ( 𝐹 “ 𝑎 ) ) = ( 𝑐 ∈ 𝐶 ↦ ( 𝐹 “ 𝑐 ) ) |
27 |
26
|
rneqi |
⊢ ran ( 𝑎 ∈ 𝐶 ↦ ( 𝐹 “ 𝑎 ) ) = ran ( 𝑐 ∈ 𝐶 ↦ ( 𝐹 “ 𝑐 ) ) |
28 |
5 27
|
eqtri |
⊢ 𝐷 = ran ( 𝑐 ∈ 𝐶 ↦ ( 𝐹 “ 𝑐 ) ) |
29 |
24 28
|
eleqtrrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → ( 𝐹 “ 𝑎 ) ∈ 𝐷 ) |
30 |
10
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
31 |
30
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → 𝐹 Fn 𝑋 ) |
32 |
|
fbelss |
⊢ ( ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑎 ∈ 𝐶 ) → 𝑎 ⊆ 𝑋 ) |
33 |
7 32
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐶 ) → 𝑎 ⊆ 𝑋 ) |
34 |
33
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → 𝑎 ⊆ 𝑋 ) |
35 |
|
fmucndlem |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑎 ⊆ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ ( 𝑎 × 𝑎 ) ) = ( ( 𝐹 “ 𝑎 ) × ( 𝐹 “ 𝑎 ) ) ) |
36 |
31 34 35
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ ( 𝑎 × 𝑎 ) ) = ( ( 𝐹 “ 𝑎 ) × ( 𝐹 “ 𝑎 ) ) ) |
37 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) |
38 |
37
|
mpofun |
⊢ Fun ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) |
39 |
|
funimass2 |
⊢ ( ( Fun ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ ( 𝑎 × 𝑎 ) ) ⊆ 𝑣 ) |
40 |
38 39
|
mpan |
⊢ ( ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ ( 𝑎 × 𝑎 ) ) ⊆ 𝑣 ) |
41 |
40
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ ( 𝑎 × 𝑎 ) ) ⊆ 𝑣 ) |
42 |
36 41
|
eqsstrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → ( ( 𝐹 “ 𝑎 ) × ( 𝐹 “ 𝑎 ) ) ⊆ 𝑣 ) |
43 |
|
id |
⊢ ( 𝑏 = ( 𝐹 “ 𝑎 ) → 𝑏 = ( 𝐹 “ 𝑎 ) ) |
44 |
43
|
sqxpeqd |
⊢ ( 𝑏 = ( 𝐹 “ 𝑎 ) → ( 𝑏 × 𝑏 ) = ( ( 𝐹 “ 𝑎 ) × ( 𝐹 “ 𝑎 ) ) ) |
45 |
44
|
sseq1d |
⊢ ( 𝑏 = ( 𝐹 “ 𝑎 ) → ( ( 𝑏 × 𝑏 ) ⊆ 𝑣 ↔ ( ( 𝐹 “ 𝑎 ) × ( 𝐹 “ 𝑎 ) ) ⊆ 𝑣 ) ) |
46 |
45
|
rspcev |
⊢ ( ( ( 𝐹 “ 𝑎 ) ∈ 𝐷 ∧ ( ( 𝐹 “ 𝑎 ) × ( 𝐹 “ 𝑎 ) ) ⊆ 𝑣 ) → ∃ 𝑏 ∈ 𝐷 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) |
47 |
29 42 46
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑎 ∈ 𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) → ∃ 𝑏 ∈ 𝐷 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) |
48 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
49 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝐶 ∈ ( CauFilu ‘ 𝑈 ) ) |
50 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) |
51 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ) |
52 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ 𝑉 ) |
53 |
|
nfcv |
⊢ Ⅎ 𝑠 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 |
54 |
|
nfcv |
⊢ Ⅎ 𝑡 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 |
55 |
|
nfcv |
⊢ Ⅎ 𝑥 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐹 ‘ 𝑡 ) 〉 |
56 |
|
nfcv |
⊢ Ⅎ 𝑦 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐹 ‘ 𝑡 ) 〉 |
57 |
|
simpl |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) → 𝑥 = 𝑠 ) |
58 |
57
|
fveq2d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑠 ) ) |
59 |
|
simpr |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) → 𝑦 = 𝑡 ) |
60 |
59
|
fveq2d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑡 ) ) |
61 |
58 60
|
opeq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 𝑡 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 = 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐹 ‘ 𝑡 ) 〉 ) |
62 |
53 54 55 56 61
|
cbvmpo |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) = ( 𝑠 ∈ 𝑋 , 𝑡 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑠 ) , ( 𝐹 ‘ 𝑡 ) 〉 ) |
63 |
48 50 51 52 62
|
ucnprima |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ∈ 𝑈 ) |
64 |
|
cfiluexsm |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ 𝑈 ) ∧ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ∈ 𝑈 ) → ∃ 𝑎 ∈ 𝐶 ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) |
65 |
48 49 63 64
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ∃ 𝑎 ∈ 𝐶 ( 𝑎 × 𝑎 ) ⊆ ( ◡ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) “ 𝑣 ) ) |
66 |
47 65
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ∃ 𝑏 ∈ 𝐷 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) |
67 |
66
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝑉 ∃ 𝑏 ∈ 𝐷 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) |
68 |
|
iscfilu |
⊢ ( 𝑉 ∈ ( UnifOn ‘ 𝑌 ) → ( 𝐷 ∈ ( CauFilu ‘ 𝑉 ) ↔ ( 𝐷 ∈ ( fBas ‘ 𝑌 ) ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑏 ∈ 𝐷 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) ) ) |
69 |
2 68
|
syl |
⊢ ( 𝜑 → ( 𝐷 ∈ ( CauFilu ‘ 𝑉 ) ↔ ( 𝐷 ∈ ( fBas ‘ 𝑌 ) ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑏 ∈ 𝐷 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) ) ) |
70 |
13 67 69
|
mpbir2and |
⊢ ( 𝜑 → 𝐷 ∈ ( CauFilu ‘ 𝑉 ) ) |