| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmucnd.1 | ⊢ ( 𝜑  →  𝑈  ∈  ( UnifOn ‘ 𝑋 ) ) | 
						
							| 2 |  | fmucnd.2 | ⊢ ( 𝜑  →  𝑉  ∈  ( UnifOn ‘ 𝑌 ) ) | 
						
							| 3 |  | fmucnd.3 | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑈  Cnu 𝑉 ) ) | 
						
							| 4 |  | fmucnd.4 | ⊢ ( 𝜑  →  𝐶  ∈  ( CauFilu ‘ 𝑈 ) ) | 
						
							| 5 |  | fmucnd.5 | ⊢ 𝐷  =  ran  ( 𝑎  ∈  𝐶  ↦  ( 𝐹  “  𝑎 ) ) | 
						
							| 6 |  | cfilufbas | ⊢ ( ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ∧  𝐶  ∈  ( CauFilu ‘ 𝑈 ) )  →  𝐶  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 7 | 1 4 6 | syl2anc | ⊢ ( 𝜑  →  𝐶  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 8 |  | isucn | ⊢ ( ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ∧  𝑉  ∈  ( UnifOn ‘ 𝑌 ) )  →  ( 𝐹  ∈  ( 𝑈  Cnu 𝑉 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑣  ∈  𝑉 ∃ 𝑟  ∈  𝑈 ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝑟 𝑦  →  ( 𝐹 ‘ 𝑥 ) 𝑣 ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 9 | 8 | simprbda | ⊢ ( ( ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ∧  𝑉  ∈  ( UnifOn ‘ 𝑌 ) )  ∧  𝐹  ∈  ( 𝑈  Cnu 𝑉 ) )  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 10 | 1 2 3 9 | syl21anc | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 11 | 2 | elfvexd | ⊢ ( 𝜑  →  𝑌  ∈  V ) | 
						
							| 12 | 5 | fbasrn | ⊢ ( ( 𝐶  ∈  ( fBas ‘ 𝑋 )  ∧  𝐹 : 𝑋 ⟶ 𝑌  ∧  𝑌  ∈  V )  →  𝐷  ∈  ( fBas ‘ 𝑌 ) ) | 
						
							| 13 | 7 10 11 12 | syl3anc | ⊢ ( 𝜑  →  𝐷  ∈  ( fBas ‘ 𝑌 ) ) | 
						
							| 14 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  ∧  𝑎  ∈  𝐶 )  ∧  ( 𝑎  ×  𝑎 )  ⊆  ( ◡ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  𝑣 ) )  →  𝑎  ∈  𝐶 ) | 
						
							| 15 |  | eqid | ⊢ ( 𝐹  “  𝑎 )  =  ( 𝐹  “  𝑎 ) | 
						
							| 16 |  | imaeq2 | ⊢ ( 𝑐  =  𝑎  →  ( 𝐹  “  𝑐 )  =  ( 𝐹  “  𝑎 ) ) | 
						
							| 17 | 16 | rspceeqv | ⊢ ( ( 𝑎  ∈  𝐶  ∧  ( 𝐹  “  𝑎 )  =  ( 𝐹  “  𝑎 ) )  →  ∃ 𝑐  ∈  𝐶 ( 𝐹  “  𝑎 )  =  ( 𝐹  “  𝑐 ) ) | 
						
							| 18 | 14 15 17 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  ∧  𝑎  ∈  𝐶 )  ∧  ( 𝑎  ×  𝑎 )  ⊆  ( ◡ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  𝑣 ) )  →  ∃ 𝑐  ∈  𝐶 ( 𝐹  “  𝑎 )  =  ( 𝐹  “  𝑐 ) ) | 
						
							| 19 |  | imaexg | ⊢ ( 𝐹  ∈  ( 𝑈  Cnu 𝑉 )  →  ( 𝐹  “  𝑎 )  ∈  V ) | 
						
							| 20 |  | eqid | ⊢ ( 𝑐  ∈  𝐶  ↦  ( 𝐹  “  𝑐 ) )  =  ( 𝑐  ∈  𝐶  ↦  ( 𝐹  “  𝑐 ) ) | 
						
							| 21 | 20 | elrnmpt | ⊢ ( ( 𝐹  “  𝑎 )  ∈  V  →  ( ( 𝐹  “  𝑎 )  ∈  ran  ( 𝑐  ∈  𝐶  ↦  ( 𝐹  “  𝑐 ) )  ↔  ∃ 𝑐  ∈  𝐶 ( 𝐹  “  𝑎 )  =  ( 𝐹  “  𝑐 ) ) ) | 
						
							| 22 | 3 19 21 | 3syl | ⊢ ( 𝜑  →  ( ( 𝐹  “  𝑎 )  ∈  ran  ( 𝑐  ∈  𝐶  ↦  ( 𝐹  “  𝑐 ) )  ↔  ∃ 𝑐  ∈  𝐶 ( 𝐹  “  𝑎 )  =  ( 𝐹  “  𝑐 ) ) ) | 
						
							| 23 | 22 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  ∧  𝑎  ∈  𝐶 )  ∧  ( 𝑎  ×  𝑎 )  ⊆  ( ◡ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  𝑣 ) )  →  ( ( 𝐹  “  𝑎 )  ∈  ran  ( 𝑐  ∈  𝐶  ↦  ( 𝐹  “  𝑐 ) )  ↔  ∃ 𝑐  ∈  𝐶 ( 𝐹  “  𝑎 )  =  ( 𝐹  “  𝑐 ) ) ) | 
						
							| 24 | 18 23 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  ∧  𝑎  ∈  𝐶 )  ∧  ( 𝑎  ×  𝑎 )  ⊆  ( ◡ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  𝑣 ) )  →  ( 𝐹  “  𝑎 )  ∈  ran  ( 𝑐  ∈  𝐶  ↦  ( 𝐹  “  𝑐 ) ) ) | 
						
							| 25 |  | imaeq2 | ⊢ ( 𝑎  =  𝑐  →  ( 𝐹  “  𝑎 )  =  ( 𝐹  “  𝑐 ) ) | 
						
							| 26 | 25 | cbvmptv | ⊢ ( 𝑎  ∈  𝐶  ↦  ( 𝐹  “  𝑎 ) )  =  ( 𝑐  ∈  𝐶  ↦  ( 𝐹  “  𝑐 ) ) | 
						
							| 27 | 26 | rneqi | ⊢ ran  ( 𝑎  ∈  𝐶  ↦  ( 𝐹  “  𝑎 ) )  =  ran  ( 𝑐  ∈  𝐶  ↦  ( 𝐹  “  𝑐 ) ) | 
						
							| 28 | 5 27 | eqtri | ⊢ 𝐷  =  ran  ( 𝑐  ∈  𝐶  ↦  ( 𝐹  “  𝑐 ) ) | 
						
							| 29 | 24 28 | eleqtrrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  ∧  𝑎  ∈  𝐶 )  ∧  ( 𝑎  ×  𝑎 )  ⊆  ( ◡ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  𝑣 ) )  →  ( 𝐹  “  𝑎 )  ∈  𝐷 ) | 
						
							| 30 | 10 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝑋 ) | 
						
							| 31 | 30 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  ∧  𝑎  ∈  𝐶 )  ∧  ( 𝑎  ×  𝑎 )  ⊆  ( ◡ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  𝑣 ) )  →  𝐹  Fn  𝑋 ) | 
						
							| 32 |  | fbelss | ⊢ ( ( 𝐶  ∈  ( fBas ‘ 𝑋 )  ∧  𝑎  ∈  𝐶 )  →  𝑎  ⊆  𝑋 ) | 
						
							| 33 | 7 32 | sylan | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐶 )  →  𝑎  ⊆  𝑋 ) | 
						
							| 34 | 33 | ad4ant13 | ⊢ ( ( ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  ∧  𝑎  ∈  𝐶 )  ∧  ( 𝑎  ×  𝑎 )  ⊆  ( ◡ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  𝑣 ) )  →  𝑎  ⊆  𝑋 ) | 
						
							| 35 |  | fmucndlem | ⊢ ( ( 𝐹  Fn  𝑋  ∧  𝑎  ⊆  𝑋 )  →  ( ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  ( 𝑎  ×  𝑎 ) )  =  ( ( 𝐹  “  𝑎 )  ×  ( 𝐹  “  𝑎 ) ) ) | 
						
							| 36 | 31 34 35 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  ∧  𝑎  ∈  𝐶 )  ∧  ( 𝑎  ×  𝑎 )  ⊆  ( ◡ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  𝑣 ) )  →  ( ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  ( 𝑎  ×  𝑎 ) )  =  ( ( 𝐹  “  𝑎 )  ×  ( 𝐹  “  𝑎 ) ) ) | 
						
							| 37 |  | eqid | ⊢ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 ) | 
						
							| 38 | 37 | mpofun | ⊢ Fun  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 ) | 
						
							| 39 |  | funimass2 | ⊢ ( ( Fun  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  ∧  ( 𝑎  ×  𝑎 )  ⊆  ( ◡ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  𝑣 ) )  →  ( ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  ( 𝑎  ×  𝑎 ) )  ⊆  𝑣 ) | 
						
							| 40 | 38 39 | mpan | ⊢ ( ( 𝑎  ×  𝑎 )  ⊆  ( ◡ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  𝑣 )  →  ( ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  ( 𝑎  ×  𝑎 ) )  ⊆  𝑣 ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  ∧  𝑎  ∈  𝐶 )  ∧  ( 𝑎  ×  𝑎 )  ⊆  ( ◡ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  𝑣 ) )  →  ( ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  ( 𝑎  ×  𝑎 ) )  ⊆  𝑣 ) | 
						
							| 42 | 36 41 | eqsstrrd | ⊢ ( ( ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  ∧  𝑎  ∈  𝐶 )  ∧  ( 𝑎  ×  𝑎 )  ⊆  ( ◡ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  𝑣 ) )  →  ( ( 𝐹  “  𝑎 )  ×  ( 𝐹  “  𝑎 ) )  ⊆  𝑣 ) | 
						
							| 43 |  | id | ⊢ ( 𝑏  =  ( 𝐹  “  𝑎 )  →  𝑏  =  ( 𝐹  “  𝑎 ) ) | 
						
							| 44 | 43 | sqxpeqd | ⊢ ( 𝑏  =  ( 𝐹  “  𝑎 )  →  ( 𝑏  ×  𝑏 )  =  ( ( 𝐹  “  𝑎 )  ×  ( 𝐹  “  𝑎 ) ) ) | 
						
							| 45 | 44 | sseq1d | ⊢ ( 𝑏  =  ( 𝐹  “  𝑎 )  →  ( ( 𝑏  ×  𝑏 )  ⊆  𝑣  ↔  ( ( 𝐹  “  𝑎 )  ×  ( 𝐹  “  𝑎 ) )  ⊆  𝑣 ) ) | 
						
							| 46 | 45 | rspcev | ⊢ ( ( ( 𝐹  “  𝑎 )  ∈  𝐷  ∧  ( ( 𝐹  “  𝑎 )  ×  ( 𝐹  “  𝑎 ) )  ⊆  𝑣 )  →  ∃ 𝑏  ∈  𝐷 ( 𝑏  ×  𝑏 )  ⊆  𝑣 ) | 
						
							| 47 | 29 42 46 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  ∧  𝑎  ∈  𝐶 )  ∧  ( 𝑎  ×  𝑎 )  ⊆  ( ◡ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  𝑣 ) )  →  ∃ 𝑏  ∈  𝐷 ( 𝑏  ×  𝑏 )  ⊆  𝑣 ) | 
						
							| 48 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  𝑈  ∈  ( UnifOn ‘ 𝑋 ) ) | 
						
							| 49 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  𝐶  ∈  ( CauFilu ‘ 𝑈 ) ) | 
						
							| 50 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  𝑉  ∈  ( UnifOn ‘ 𝑌 ) ) | 
						
							| 51 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  𝐹  ∈  ( 𝑈  Cnu 𝑉 ) ) | 
						
							| 52 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  𝑣  ∈  𝑉 ) | 
						
							| 53 |  | nfcv | ⊢ Ⅎ 𝑠 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 | 
						
							| 54 |  | nfcv | ⊢ Ⅎ 𝑡 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 | 
						
							| 55 |  | nfcv | ⊢ Ⅎ 𝑥 〈 ( 𝐹 ‘ 𝑠 ) ,  ( 𝐹 ‘ 𝑡 ) 〉 | 
						
							| 56 |  | nfcv | ⊢ Ⅎ 𝑦 〈 ( 𝐹 ‘ 𝑠 ) ,  ( 𝐹 ‘ 𝑡 ) 〉 | 
						
							| 57 |  | simpl | ⊢ ( ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 )  →  𝑥  =  𝑠 ) | 
						
							| 58 | 57 | fveq2d | ⊢ ( ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑠 ) ) | 
						
							| 59 |  | simpr | ⊢ ( ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 )  →  𝑦  =  𝑡 ) | 
						
							| 60 | 59 | fveq2d | ⊢ ( ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 61 | 58 60 | opeq12d | ⊢ ( ( 𝑥  =  𝑠  ∧  𝑦  =  𝑡 )  →  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉  =  〈 ( 𝐹 ‘ 𝑠 ) ,  ( 𝐹 ‘ 𝑡 ) 〉 ) | 
						
							| 62 | 53 54 55 56 61 | cbvmpo | ⊢ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  =  ( 𝑠  ∈  𝑋 ,  𝑡  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑠 ) ,  ( 𝐹 ‘ 𝑡 ) 〉 ) | 
						
							| 63 | 48 50 51 52 62 | ucnprima | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  ( ◡ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  𝑣 )  ∈  𝑈 ) | 
						
							| 64 |  | cfiluexsm | ⊢ ( ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ∧  𝐶  ∈  ( CauFilu ‘ 𝑈 )  ∧  ( ◡ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  𝑣 )  ∈  𝑈 )  →  ∃ 𝑎  ∈  𝐶 ( 𝑎  ×  𝑎 )  ⊆  ( ◡ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  𝑣 ) ) | 
						
							| 65 | 48 49 63 64 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  ∃ 𝑎  ∈  𝐶 ( 𝑎  ×  𝑎 )  ⊆  ( ◡ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑋  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐹 ‘ 𝑦 ) 〉 )  “  𝑣 ) ) | 
						
							| 66 | 47 65 | r19.29a | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  ∃ 𝑏  ∈  𝐷 ( 𝑏  ×  𝑏 )  ⊆  𝑣 ) | 
						
							| 67 | 66 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑣  ∈  𝑉 ∃ 𝑏  ∈  𝐷 ( 𝑏  ×  𝑏 )  ⊆  𝑣 ) | 
						
							| 68 |  | iscfilu | ⊢ ( 𝑉  ∈  ( UnifOn ‘ 𝑌 )  →  ( 𝐷  ∈  ( CauFilu ‘ 𝑉 )  ↔  ( 𝐷  ∈  ( fBas ‘ 𝑌 )  ∧  ∀ 𝑣  ∈  𝑉 ∃ 𝑏  ∈  𝐷 ( 𝑏  ×  𝑏 )  ⊆  𝑣 ) ) ) | 
						
							| 69 | 2 68 | syl | ⊢ ( 𝜑  →  ( 𝐷  ∈  ( CauFilu ‘ 𝑉 )  ↔  ( 𝐷  ∈  ( fBas ‘ 𝑌 )  ∧  ∀ 𝑣  ∈  𝑉 ∃ 𝑏  ∈  𝐷 ( 𝑏  ×  𝑏 )  ⊆  𝑣 ) ) ) | 
						
							| 70 | 13 67 69 | mpbir2and | ⊢ ( 𝜑  →  𝐷  ∈  ( CauFilu ‘ 𝑉 ) ) |