Step |
Hyp |
Ref |
Expression |
1 |
|
fmul01lt1.1 |
⊢ Ⅎ 𝑖 𝐵 |
2 |
|
fmul01lt1.2 |
⊢ Ⅎ 𝑖 𝜑 |
3 |
|
fmul01lt1.3 |
⊢ Ⅎ 𝑗 𝐴 |
4 |
|
fmul01lt1.4 |
⊢ 𝐴 = seq 1 ( · , 𝐵 ) |
5 |
|
fmul01lt1.5 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
6 |
|
fmul01lt1.6 |
⊢ ( 𝜑 → 𝐵 : ( 1 ... 𝑀 ) ⟶ ℝ ) |
7 |
|
fmul01lt1.7 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 0 ≤ ( 𝐵 ‘ 𝑖 ) ) |
8 |
|
fmul01lt1.8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ≤ 1 ) |
9 |
|
fmul01lt1.9 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
10 |
|
fmul01lt1.10 |
⊢ ( 𝜑 → ∃ 𝑗 ∈ ( 1 ... 𝑀 ) ( 𝐵 ‘ 𝑗 ) < 𝐸 ) |
11 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
12 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑀 |
13 |
3 12
|
nffv |
⊢ Ⅎ 𝑗 ( 𝐴 ‘ 𝑀 ) |
14 |
|
nfcv |
⊢ Ⅎ 𝑗 < |
15 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐸 |
16 |
13 14 15
|
nfbr |
⊢ Ⅎ 𝑗 ( 𝐴 ‘ 𝑀 ) < 𝐸 |
17 |
|
nfv |
⊢ Ⅎ 𝑖 𝑗 ∈ ( 1 ... 𝑀 ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑗 |
19 |
1 18
|
nffv |
⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝑗 ) |
20 |
|
nfcv |
⊢ Ⅎ 𝑖 < |
21 |
|
nfcv |
⊢ Ⅎ 𝑖 𝐸 |
22 |
19 20 21
|
nfbr |
⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝑗 ) < 𝐸 |
23 |
2 17 22
|
nf3an |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐵 ‘ 𝑗 ) < 𝐸 ) |
24 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐵 ‘ 𝑗 ) < 𝐸 ) → 1 ∈ ℤ ) |
25 |
|
elnnuz |
⊢ ( 𝑀 ∈ ℕ ↔ 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
26 |
5 25
|
sylib |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
27 |
26
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐵 ‘ 𝑗 ) < 𝐸 ) → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
28 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
29 |
28
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐵 ‘ 𝑗 ) < 𝐸 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
30 |
7
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐵 ‘ 𝑗 ) < 𝐸 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 0 ≤ ( 𝐵 ‘ 𝑖 ) ) |
31 |
8
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐵 ‘ 𝑗 ) < 𝐸 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ≤ 1 ) |
32 |
9
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐵 ‘ 𝑗 ) < 𝐸 ) → 𝐸 ∈ ℝ+ ) |
33 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐵 ‘ 𝑗 ) < 𝐸 ) → 𝑗 ∈ ( 1 ... 𝑀 ) ) |
34 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐵 ‘ 𝑗 ) < 𝐸 ) → ( 𝐵 ‘ 𝑗 ) < 𝐸 ) |
35 |
1 23 4 24 27 29 30 31 32 33 34
|
fmul01lt1lem2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐵 ‘ 𝑗 ) < 𝐸 ) → ( 𝐴 ‘ 𝑀 ) < 𝐸 ) |
36 |
35
|
3exp |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 1 ... 𝑀 ) → ( ( 𝐵 ‘ 𝑗 ) < 𝐸 → ( 𝐴 ‘ 𝑀 ) < 𝐸 ) ) ) |
37 |
11 16 36
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( 1 ... 𝑀 ) ( 𝐵 ‘ 𝑗 ) < 𝐸 → ( 𝐴 ‘ 𝑀 ) < 𝐸 ) ) |
38 |
10 37
|
mpd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑀 ) < 𝐸 ) |