| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fmul01lt1.1 | 
							⊢ Ⅎ 𝑖 𝐵  | 
						
						
							| 2 | 
							
								
							 | 
							fmul01lt1.2 | 
							⊢ Ⅎ 𝑖 𝜑  | 
						
						
							| 3 | 
							
								
							 | 
							fmul01lt1.3 | 
							⊢ Ⅎ 𝑗 𝐴  | 
						
						
							| 4 | 
							
								
							 | 
							fmul01lt1.4 | 
							⊢ 𝐴  =  seq 1 (  ·  ,  𝐵 )  | 
						
						
							| 5 | 
							
								
							 | 
							fmul01lt1.5 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℕ )  | 
						
						
							| 6 | 
							
								
							 | 
							fmul01lt1.6 | 
							⊢ ( 𝜑  →  𝐵 : ( 1 ... 𝑀 ) ⟶ ℝ )  | 
						
						
							| 7 | 
							
								
							 | 
							fmul01lt1.7 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝑖 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fmul01lt1.8 | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ≤  1 )  | 
						
						
							| 9 | 
							
								
							 | 
							fmul01lt1.9 | 
							⊢ ( 𝜑  →  𝐸  ∈  ℝ+ )  | 
						
						
							| 10 | 
							
								
							 | 
							fmul01lt1.10 | 
							⊢ ( 𝜑  →  ∃ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝐵 ‘ 𝑗 )  <  𝐸 )  | 
						
						
							| 11 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑗 𝜑  | 
						
						
							| 12 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑗 𝑀  | 
						
						
							| 13 | 
							
								3 12
							 | 
							nffv | 
							⊢ Ⅎ 𝑗 ( 𝐴 ‘ 𝑀 )  | 
						
						
							| 14 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑗  <   | 
						
						
							| 15 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑗 𝐸  | 
						
						
							| 16 | 
							
								13 14 15
							 | 
							nfbr | 
							⊢ Ⅎ 𝑗 ( 𝐴 ‘ 𝑀 )  <  𝐸  | 
						
						
							| 17 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑖 𝑗  ∈  ( 1 ... 𝑀 )  | 
						
						
							| 18 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑖 𝑗  | 
						
						
							| 19 | 
							
								1 18
							 | 
							nffv | 
							⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝑗 )  | 
						
						
							| 20 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑖  <   | 
						
						
							| 21 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑖 𝐸  | 
						
						
							| 22 | 
							
								19 20 21
							 | 
							nfbr | 
							⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝑗 )  <  𝐸  | 
						
						
							| 23 | 
							
								2 17 22
							 | 
							nf3an | 
							⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  | 
						
						
							| 24 | 
							
								
							 | 
							1zzd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  →  1  ∈  ℤ )  | 
						
						
							| 25 | 
							
								
							 | 
							elnnuz | 
							⊢ ( 𝑀  ∈  ℕ  ↔  𝑀  ∈  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 26 | 
							
								5 25
							 | 
							sylib | 
							⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 28 | 
							
								6
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ )  | 
						
						
							| 29 | 
							
								28
							 | 
							3ad2antl1 | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ )  | 
						
						
							| 30 | 
							
								7
							 | 
							3ad2antl1 | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝑖 ) )  | 
						
						
							| 31 | 
							
								8
							 | 
							3ad2antl1 | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ≤  1 )  | 
						
						
							| 32 | 
							
								9
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  →  𝐸  ∈  ℝ+ )  | 
						
						
							| 33 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  →  𝑗  ∈  ( 1 ... 𝑀 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  →  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  | 
						
						
							| 35 | 
							
								1 23 4 24 27 29 30 31 32 33 34
							 | 
							fmul01lt1lem2 | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  →  ( 𝐴 ‘ 𝑀 )  <  𝐸 )  | 
						
						
							| 36 | 
							
								35
							 | 
							3exp | 
							⊢ ( 𝜑  →  ( 𝑗  ∈  ( 1 ... 𝑀 )  →  ( ( 𝐵 ‘ 𝑗 )  <  𝐸  →  ( 𝐴 ‘ 𝑀 )  <  𝐸 ) ) )  | 
						
						
							| 37 | 
							
								11 16 36
							 | 
							rexlimd | 
							⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝐵 ‘ 𝑗 )  <  𝐸  →  ( 𝐴 ‘ 𝑀 )  <  𝐸 ) )  | 
						
						
							| 38 | 
							
								10 37
							 | 
							mpd | 
							⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑀 )  <  𝐸 )  |