Step |
Hyp |
Ref |
Expression |
1 |
|
fmul01lt1lem1.1 |
⊢ Ⅎ 𝑖 𝐵 |
2 |
|
fmul01lt1lem1.2 |
⊢ Ⅎ 𝑖 𝜑 |
3 |
|
fmul01lt1lem1.3 |
⊢ 𝐴 = seq 𝐿 ( · , 𝐵 ) |
4 |
|
fmul01lt1lem1.4 |
⊢ ( 𝜑 → 𝐿 ∈ ℤ ) |
5 |
|
fmul01lt1lem1.5 |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝐿 ) ) |
6 |
|
fmul01lt1lem1.6 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
7 |
|
fmul01lt1lem1.7 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → 0 ≤ ( 𝐵 ‘ 𝑖 ) ) |
8 |
|
fmul01lt1lem1.8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ≤ 1 ) |
9 |
|
fmul01lt1lem1.9 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
10 |
|
fmul01lt1lem1.10 |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝐿 ) < 𝐸 ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝐿 ) → 𝑀 = 𝐿 ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝐿 ) → ( 𝐴 ‘ 𝑀 ) = ( 𝐴 ‘ 𝐿 ) ) |
13 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝐿 ) → 𝐴 = seq 𝐿 ( · , 𝐵 ) ) |
14 |
13
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝐿 ) → ( 𝐴 ‘ 𝐿 ) = ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) ) |
15 |
|
seq1 |
⊢ ( 𝐿 ∈ ℤ → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) = ( 𝐵 ‘ 𝐿 ) ) |
16 |
4 15
|
syl |
⊢ ( 𝜑 → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) = ( 𝐵 ‘ 𝐿 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝐿 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) = ( 𝐵 ‘ 𝐿 ) ) |
18 |
12 14 17
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝐿 ) → ( 𝐴 ‘ 𝑀 ) = ( 𝐵 ‘ 𝐿 ) ) |
19 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝐿 ) → ( 𝐵 ‘ 𝐿 ) < 𝐸 ) |
20 |
18 19
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝐿 ) → ( 𝐴 ‘ 𝑀 ) < 𝐸 ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 𝐿 ) → ¬ 𝑀 = 𝐿 ) |
22 |
21
|
neqned |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 𝐿 ) → 𝑀 ≠ 𝐿 ) |
23 |
4
|
zred |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
24 |
|
eluzelz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝐿 ) → 𝑀 ∈ ℤ ) |
25 |
5 24
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
26 |
25
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
27 |
|
eluzle |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝐿 ) → 𝐿 ≤ 𝑀 ) |
28 |
5 27
|
syl |
⊢ ( 𝜑 → 𝐿 ≤ 𝑀 ) |
29 |
23 26 28
|
3jca |
⊢ ( 𝜑 → ( 𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ≤ 𝑀 ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 𝐿 ) → ( 𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ≤ 𝑀 ) ) |
31 |
|
leltne |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝐿 ≤ 𝑀 ) → ( 𝐿 < 𝑀 ↔ 𝑀 ≠ 𝐿 ) ) |
32 |
30 31
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 𝐿 ) → ( 𝐿 < 𝑀 ↔ 𝑀 ≠ 𝐿 ) ) |
33 |
22 32
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 𝐿 ) → 𝐿 < 𝑀 ) |
34 |
3
|
fveq1i |
⊢ ( 𝐴 ‘ 𝑀 ) = ( seq 𝐿 ( · , 𝐵 ) ‘ 𝑀 ) |
35 |
|
remulcl |
⊢ ( ( 𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝑗 · 𝑘 ) ∈ ℝ ) |
36 |
35
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐿 < 𝑀 ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → ( 𝑗 · 𝑘 ) ∈ ℝ ) |
37 |
|
recn |
⊢ ( 𝑗 ∈ ℝ → 𝑗 ∈ ℂ ) |
38 |
37
|
3ad2ant1 |
⊢ ( ( 𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑙 ∈ ℝ ) → 𝑗 ∈ ℂ ) |
39 |
|
recn |
⊢ ( 𝑘 ∈ ℝ → 𝑘 ∈ ℂ ) |
40 |
39
|
3ad2ant2 |
⊢ ( ( 𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑙 ∈ ℝ ) → 𝑘 ∈ ℂ ) |
41 |
|
recn |
⊢ ( 𝑙 ∈ ℝ → 𝑙 ∈ ℂ ) |
42 |
41
|
3ad2ant3 |
⊢ ( ( 𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑙 ∈ ℝ ) → 𝑙 ∈ ℂ ) |
43 |
38 40 42
|
mulassd |
⊢ ( ( 𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑙 ∈ ℝ ) → ( ( 𝑗 · 𝑘 ) · 𝑙 ) = ( 𝑗 · ( 𝑘 · 𝑙 ) ) ) |
44 |
43
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐿 < 𝑀 ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑙 ∈ ℝ ) ) → ( ( 𝑗 · 𝑘 ) · 𝑙 ) = ( 𝑗 · ( 𝑘 · 𝑙 ) ) ) |
45 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → 𝐿 < 𝑀 ) |
46 |
45
|
olcd |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( 𝑀 < 𝐿 ∨ 𝐿 < 𝑀 ) ) |
47 |
26 23
|
jca |
⊢ ( 𝜑 → ( 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ) ) |
49 |
|
lttri2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( 𝑀 ≠ 𝐿 ↔ ( 𝑀 < 𝐿 ∨ 𝐿 < 𝑀 ) ) ) |
50 |
48 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( 𝑀 ≠ 𝐿 ↔ ( 𝑀 < 𝐿 ∨ 𝐿 < 𝑀 ) ) ) |
51 |
46 50
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → 𝑀 ≠ 𝐿 ) |
52 |
51
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ¬ 𝑀 = 𝐿 ) |
53 |
|
uzp1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝐿 ) → ( 𝑀 = 𝐿 ∨ 𝑀 ∈ ( ℤ≥ ‘ ( 𝐿 + 1 ) ) ) ) |
54 |
5 53
|
syl |
⊢ ( 𝜑 → ( 𝑀 = 𝐿 ∨ 𝑀 ∈ ( ℤ≥ ‘ ( 𝐿 + 1 ) ) ) ) |
55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( 𝑀 = 𝐿 ∨ 𝑀 ∈ ( ℤ≥ ‘ ( 𝐿 + 1 ) ) ) ) |
56 |
55
|
ord |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( ¬ 𝑀 = 𝐿 → 𝑀 ∈ ( ℤ≥ ‘ ( 𝐿 + 1 ) ) ) ) |
57 |
52 56
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ ( 𝐿 + 1 ) ) ) |
58 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → 𝐿 ∈ ℤ ) |
59 |
|
uzid |
⊢ ( 𝐿 ∈ ℤ → 𝐿 ∈ ( ℤ≥ ‘ 𝐿 ) ) |
60 |
58 59
|
syl |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → 𝐿 ∈ ( ℤ≥ ‘ 𝐿 ) ) |
61 |
|
nfv |
⊢ Ⅎ 𝑖 𝑗 ∈ ( 𝐿 ... 𝑀 ) |
62 |
2 61
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑗 ∈ ( 𝐿 ... 𝑀 ) ) |
63 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑗 |
64 |
1 63
|
nffv |
⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝑗 ) |
65 |
64
|
nfel1 |
⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝑗 ) ∈ ℝ |
66 |
62 65
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑗 ) ∈ ℝ ) |
67 |
|
eleq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 ∈ ( 𝐿 ... 𝑀 ) ↔ 𝑗 ∈ ( 𝐿 ... 𝑀 ) ) ) |
68 |
67
|
anbi2d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑗 ∈ ( 𝐿 ... 𝑀 ) ) ) ) |
69 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) ) |
70 |
69
|
eleq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐵 ‘ 𝑖 ) ∈ ℝ ↔ ( 𝐵 ‘ 𝑗 ) ∈ ℝ ) ) |
71 |
68 70
|
imbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑗 ) ∈ ℝ ) ) ) |
72 |
66 71 6
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑗 ) ∈ ℝ ) |
73 |
72
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐿 < 𝑀 ) ∧ 𝑗 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑗 ) ∈ ℝ ) |
74 |
36 44 57 60 73
|
seqsplit |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝑀 ) = ( ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) · ( seq ( 𝐿 + 1 ) ( · , 𝐵 ) ‘ 𝑀 ) ) ) |
75 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝐿 ) → 𝐿 ∈ ( 𝐿 ... 𝑀 ) ) |
76 |
5 75
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐿 ... 𝑀 ) ) |
77 |
76
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝐿 ∈ ( 𝐿 ... 𝑀 ) ) ) |
78 |
|
nfv |
⊢ Ⅎ 𝑖 𝐿 ∈ ( 𝐿 ... 𝑀 ) |
79 |
2 78
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝐿 ∈ ( 𝐿 ... 𝑀 ) ) |
80 |
|
nfcv |
⊢ Ⅎ 𝑖 𝐿 |
81 |
1 80
|
nffv |
⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝐿 ) |
82 |
81
|
nfel1 |
⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝐿 ) ∈ ℝ |
83 |
79 82
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝐿 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝐿 ) ∈ ℝ ) |
84 |
|
eleq1 |
⊢ ( 𝑖 = 𝐿 → ( 𝑖 ∈ ( 𝐿 ... 𝑀 ) ↔ 𝐿 ∈ ( 𝐿 ... 𝑀 ) ) ) |
85 |
84
|
anbi2d |
⊢ ( 𝑖 = 𝐿 → ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 𝐿 ∈ ( 𝐿 ... 𝑀 ) ) ) ) |
86 |
|
fveq2 |
⊢ ( 𝑖 = 𝐿 → ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝐿 ) ) |
87 |
86
|
eleq1d |
⊢ ( 𝑖 = 𝐿 → ( ( 𝐵 ‘ 𝑖 ) ∈ ℝ ↔ ( 𝐵 ‘ 𝐿 ) ∈ ℝ ) ) |
88 |
85 87
|
imbi12d |
⊢ ( 𝑖 = 𝐿 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝐿 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝐿 ) ∈ ℝ ) ) ) |
89 |
83 88 6
|
vtoclg1f |
⊢ ( 𝐿 ∈ ( 𝐿 ... 𝑀 ) → ( ( 𝜑 ∧ 𝐿 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝐿 ) ∈ ℝ ) ) |
90 |
76 77 89
|
sylc |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝐿 ) ∈ ℝ ) |
91 |
16 90
|
eqeltrd |
⊢ ( 𝜑 → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) ∈ ℝ ) |
92 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) ∈ ℝ ) |
93 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝐿 ∈ ℤ ) |
94 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝑀 ∈ ℤ ) |
95 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) → 𝑗 ∈ ℤ ) |
96 |
95
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝑗 ∈ ℤ ) |
97 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝐿 ∈ ℝ ) |
98 |
|
peano2re |
⊢ ( 𝐿 ∈ ℝ → ( 𝐿 + 1 ) ∈ ℝ ) |
99 |
23 98
|
syl |
⊢ ( 𝜑 → ( 𝐿 + 1 ) ∈ ℝ ) |
100 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → ( 𝐿 + 1 ) ∈ ℝ ) |
101 |
95
|
zred |
⊢ ( 𝑗 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) → 𝑗 ∈ ℝ ) |
102 |
101
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝑗 ∈ ℝ ) |
103 |
23
|
lep1d |
⊢ ( 𝜑 → 𝐿 ≤ ( 𝐿 + 1 ) ) |
104 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝐿 ≤ ( 𝐿 + 1 ) ) |
105 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) → ( 𝐿 + 1 ) ≤ 𝑗 ) |
106 |
105
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → ( 𝐿 + 1 ) ≤ 𝑗 ) |
107 |
97 100 102 104 106
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝐿 ≤ 𝑗 ) |
108 |
|
elfzle2 |
⊢ ( 𝑗 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) → 𝑗 ≤ 𝑀 ) |
109 |
108
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝑗 ≤ 𝑀 ) |
110 |
93 94 96 107 109
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝑗 ∈ ( 𝐿 ... 𝑀 ) ) |
111 |
110 72
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → ( 𝐵 ‘ 𝑗 ) ∈ ℝ ) |
112 |
111
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐿 < 𝑀 ) ∧ 𝑗 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → ( 𝐵 ‘ 𝑗 ) ∈ ℝ ) |
113 |
57 112 36
|
seqcl |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( seq ( 𝐿 + 1 ) ( · , 𝐵 ) ‘ 𝑀 ) ∈ ℝ ) |
114 |
92 113
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) · ( seq ( 𝐿 + 1 ) ( · , 𝐵 ) ‘ 𝑀 ) ) ∈ ℝ ) |
115 |
9
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
116 |
115
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → 𝐸 ∈ ℝ ) |
117 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → 1 ∈ ℝ ) |
118 |
|
nfcv |
⊢ Ⅎ 𝑖 0 |
119 |
|
nfcv |
⊢ Ⅎ 𝑖 ≤ |
120 |
118 119 81
|
nfbr |
⊢ Ⅎ 𝑖 0 ≤ ( 𝐵 ‘ 𝐿 ) |
121 |
79 120
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝐿 ∈ ( 𝐿 ... 𝑀 ) ) → 0 ≤ ( 𝐵 ‘ 𝐿 ) ) |
122 |
86
|
breq2d |
⊢ ( 𝑖 = 𝐿 → ( 0 ≤ ( 𝐵 ‘ 𝑖 ) ↔ 0 ≤ ( 𝐵 ‘ 𝐿 ) ) ) |
123 |
85 122
|
imbi12d |
⊢ ( 𝑖 = 𝐿 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → 0 ≤ ( 𝐵 ‘ 𝑖 ) ) ↔ ( ( 𝜑 ∧ 𝐿 ∈ ( 𝐿 ... 𝑀 ) ) → 0 ≤ ( 𝐵 ‘ 𝐿 ) ) ) ) |
124 |
121 123 7
|
vtoclg1f |
⊢ ( 𝐿 ∈ ( 𝐿 ... 𝑀 ) → ( ( 𝜑 ∧ 𝐿 ∈ ( 𝐿 ... 𝑀 ) ) → 0 ≤ ( 𝐵 ‘ 𝐿 ) ) ) |
125 |
76 77 124
|
sylc |
⊢ ( 𝜑 → 0 ≤ ( 𝐵 ‘ 𝐿 ) ) |
126 |
125 16
|
breqtrrd |
⊢ ( 𝜑 → 0 ≤ ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) ) |
127 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → 0 ≤ ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) ) |
128 |
|
nfv |
⊢ Ⅎ 𝑖 𝐿 < 𝑀 |
129 |
2 128
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝐿 < 𝑀 ) |
130 |
|
eqid |
⊢ seq ( 𝐿 + 1 ) ( · , 𝐵 ) = seq ( 𝐿 + 1 ) ( · , 𝐵 ) |
131 |
4
|
peano2zd |
⊢ ( 𝜑 → ( 𝐿 + 1 ) ∈ ℤ ) |
132 |
131
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( 𝐿 + 1 ) ∈ ℤ ) |
133 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → 𝐿 ∈ ℝ ) |
134 |
133 45
|
gtned |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → 𝑀 ≠ 𝐿 ) |
135 |
134
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ¬ 𝑀 = 𝐿 ) |
136 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝐿 ) ) |
137 |
136 53
|
syl |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( 𝑀 = 𝐿 ∨ 𝑀 ∈ ( ℤ≥ ‘ ( 𝐿 + 1 ) ) ) ) |
138 |
|
orel1 |
⊢ ( ¬ 𝑀 = 𝐿 → ( ( 𝑀 = 𝐿 ∨ 𝑀 ∈ ( ℤ≥ ‘ ( 𝐿 + 1 ) ) ) → 𝑀 ∈ ( ℤ≥ ‘ ( 𝐿 + 1 ) ) ) ) |
139 |
135 137 138
|
sylc |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ ( 𝐿 + 1 ) ) ) |
140 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → 𝑀 ∈ ℤ ) |
141 |
|
zltp1le |
⊢ ( ( 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝐿 < 𝑀 ↔ ( 𝐿 + 1 ) ≤ 𝑀 ) ) |
142 |
58 140 141
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( 𝐿 < 𝑀 ↔ ( 𝐿 + 1 ) ≤ 𝑀 ) ) |
143 |
45 142
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( 𝐿 + 1 ) ≤ 𝑀 ) |
144 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → 𝑀 ∈ ℝ ) |
145 |
144
|
leidd |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → 𝑀 ≤ 𝑀 ) |
146 |
132 140 140 143 145
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → 𝑀 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) |
147 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝐿 ∈ ℤ ) |
148 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝑀 ∈ ℤ ) |
149 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) → 𝑖 ∈ ℤ ) |
150 |
149
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝑖 ∈ ℤ ) |
151 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝐿 ∈ ℝ ) |
152 |
151 98
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → ( 𝐿 + 1 ) ∈ ℝ ) |
153 |
149
|
zred |
⊢ ( 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) → 𝑖 ∈ ℝ ) |
154 |
153
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝑖 ∈ ℝ ) |
155 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝐿 ≤ ( 𝐿 + 1 ) ) |
156 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) → ( 𝐿 + 1 ) ≤ 𝑖 ) |
157 |
156
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → ( 𝐿 + 1 ) ≤ 𝑖 ) |
158 |
151 152 154 155 157
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝐿 ≤ 𝑖 ) |
159 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) → 𝑖 ≤ 𝑀 ) |
160 |
159
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝑖 ≤ 𝑀 ) |
161 |
147 148 150 158 160
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) |
162 |
161 6
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
163 |
162
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐿 < 𝑀 ) ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
164 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝐿 < 𝑀 ) ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝜑 ) |
165 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐿 < 𝑀 ) ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝐿 ∈ ℤ ) |
166 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐿 < 𝑀 ) ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝑀 ∈ ℤ ) |
167 |
149
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐿 < 𝑀 ) ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝑖 ∈ ℤ ) |
168 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐿 < 𝑀 ) ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝐿 ∈ ℝ ) |
169 |
99
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐿 < 𝑀 ) ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → ( 𝐿 + 1 ) ∈ ℝ ) |
170 |
153
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐿 < 𝑀 ) ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝑖 ∈ ℝ ) |
171 |
103
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐿 < 𝑀 ) ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝐿 ≤ ( 𝐿 + 1 ) ) |
172 |
156
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐿 < 𝑀 ) ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → ( 𝐿 + 1 ) ≤ 𝑖 ) |
173 |
168 169 170 171 172
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝐿 < 𝑀 ) ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝐿 ≤ 𝑖 ) |
174 |
159
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐿 < 𝑀 ) ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝑖 ≤ 𝑀 ) |
175 |
165 166 167 173 174
|
elfzd |
⊢ ( ( ( 𝜑 ∧ 𝐿 < 𝑀 ) ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) |
176 |
164 175 7
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐿 < 𝑀 ) ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → 0 ≤ ( 𝐵 ‘ 𝑖 ) ) |
177 |
164 175 8
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐿 < 𝑀 ) ∧ 𝑖 ∈ ( ( 𝐿 + 1 ) ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ≤ 1 ) |
178 |
1 129 130 132 139 146 163 176 177
|
fmul01 |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( 0 ≤ ( seq ( 𝐿 + 1 ) ( · , 𝐵 ) ‘ 𝑀 ) ∧ ( seq ( 𝐿 + 1 ) ( · , 𝐵 ) ‘ 𝑀 ) ≤ 1 ) ) |
179 |
178
|
simprd |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( seq ( 𝐿 + 1 ) ( · , 𝐵 ) ‘ 𝑀 ) ≤ 1 ) |
180 |
113 117 92 127 179
|
lemul2ad |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) · ( seq ( 𝐿 + 1 ) ( · , 𝐵 ) ‘ 𝑀 ) ) ≤ ( ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) · 1 ) ) |
181 |
91
|
recnd |
⊢ ( 𝜑 → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) ∈ ℂ ) |
182 |
181
|
mulid1d |
⊢ ( 𝜑 → ( ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) · 1 ) = ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) ) |
183 |
182
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) · 1 ) = ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) ) |
184 |
180 183
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) · ( seq ( 𝐿 + 1 ) ( · , 𝐵 ) ‘ 𝑀 ) ) ≤ ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) ) |
185 |
16 10
|
eqbrtrd |
⊢ ( 𝜑 → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) < 𝐸 ) |
186 |
185
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) < 𝐸 ) |
187 |
114 92 116 184 186
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( ( seq 𝐿 ( · , 𝐵 ) ‘ 𝐿 ) · ( seq ( 𝐿 + 1 ) ( · , 𝐵 ) ‘ 𝑀 ) ) < 𝐸 ) |
188 |
74 187
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝑀 ) < 𝐸 ) |
189 |
34 188
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝐿 < 𝑀 ) → ( 𝐴 ‘ 𝑀 ) < 𝐸 ) |
190 |
33 189
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 𝐿 ) → ( 𝐴 ‘ 𝑀 ) < 𝐸 ) |
191 |
20 190
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑀 ) < 𝐸 ) |