| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmul01lt1lem2.1 |
⊢ Ⅎ 𝑖 𝐵 |
| 2 |
|
fmul01lt1lem2.2 |
⊢ Ⅎ 𝑖 𝜑 |
| 3 |
|
fmul01lt1lem2.3 |
⊢ 𝐴 = seq 𝐿 ( · , 𝐵 ) |
| 4 |
|
fmul01lt1lem2.4 |
⊢ ( 𝜑 → 𝐿 ∈ ℤ ) |
| 5 |
|
fmul01lt1lem2.5 |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝐿 ) ) |
| 6 |
|
fmul01lt1lem2.6 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
| 7 |
|
fmul01lt1lem2.7 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → 0 ≤ ( 𝐵 ‘ 𝑖 ) ) |
| 8 |
|
fmul01lt1lem2.8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ≤ 1 ) |
| 9 |
|
fmul01lt1lem2.9 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 10 |
|
fmul01lt1lem2.10 |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝐿 ... 𝑀 ) ) |
| 11 |
|
fmul01lt1lem2.11 |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝐽 ) < 𝐸 ) |
| 12 |
|
nfv |
⊢ Ⅎ 𝑖 𝐽 = 𝐿 |
| 13 |
2 12
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝐽 = 𝐿 ) |
| 14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 = 𝐿 ) → 𝐿 ∈ ℤ ) |
| 15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 = 𝐿 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝐿 ) ) |
| 16 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
| 17 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → 0 ≤ ( 𝐵 ‘ 𝑖 ) ) |
| 18 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ≤ 1 ) |
| 19 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 = 𝐿 ) → 𝐸 ∈ ℝ+ ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐽 = 𝐿 ) → 𝐽 = 𝐿 ) |
| 21 |
20
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐽 = 𝐿 ) → ( 𝐵 ‘ 𝐽 ) = ( 𝐵 ‘ 𝐿 ) ) |
| 22 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 = 𝐿 ) → ( 𝐵 ‘ 𝐽 ) < 𝐸 ) |
| 23 |
21 22
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝐽 = 𝐿 ) → ( 𝐵 ‘ 𝐿 ) < 𝐸 ) |
| 24 |
1 13 3 14 15 16 17 18 19 23
|
fmul01lt1lem1 |
⊢ ( ( 𝜑 ∧ 𝐽 = 𝐿 ) → ( 𝐴 ‘ 𝑀 ) < 𝐸 ) |
| 25 |
3
|
fveq1i |
⊢ ( 𝐴 ‘ 𝑀 ) = ( seq 𝐿 ( · , 𝐵 ) ‘ 𝑀 ) |
| 26 |
|
nfv |
⊢ Ⅎ 𝑖 𝑎 ∈ ( 𝐿 ... 𝑀 ) |
| 27 |
2 26
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) |
| 28 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑎 |
| 29 |
1 28
|
nffv |
⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝑎 ) |
| 30 |
29
|
nfel1 |
⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝑎 ) ∈ ℝ |
| 31 |
27 30
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) |
| 32 |
|
eleq1w |
⊢ ( 𝑖 = 𝑎 → ( 𝑖 ∈ ( 𝐿 ... 𝑀 ) ↔ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) ) |
| 33 |
32
|
anbi2d |
⊢ ( 𝑖 = 𝑎 → ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) ) ) |
| 34 |
|
fveq2 |
⊢ ( 𝑖 = 𝑎 → ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑎 ) ) |
| 35 |
34
|
eleq1d |
⊢ ( 𝑖 = 𝑎 → ( ( 𝐵 ‘ 𝑖 ) ∈ ℝ ↔ ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) ) |
| 36 |
33 35
|
imbi12d |
⊢ ( 𝑖 = 𝑎 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) ) ) |
| 37 |
31 36 6
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) |
| 38 |
|
remulcl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑎 · 𝑗 ) ∈ ℝ ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) → ( 𝑎 · 𝑗 ) ∈ ℝ ) |
| 40 |
5 37 39
|
seqcl |
⊢ ( 𝜑 → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝑀 ) ∈ ℝ ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝑀 ) ∈ ℝ ) |
| 42 |
|
elfzuz3 |
⊢ ( 𝐽 ∈ ( 𝐿 ... 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝐽 ) ) |
| 43 |
10 42
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝐽 ) ) |
| 44 |
|
nfv |
⊢ Ⅎ 𝑖 𝑎 ∈ ( 𝐽 ... 𝑀 ) |
| 45 |
2 44
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑎 ∈ ( 𝐽 ... 𝑀 ) ) |
| 46 |
45 30
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐽 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) |
| 47 |
|
eleq1w |
⊢ ( 𝑖 = 𝑎 → ( 𝑖 ∈ ( 𝐽 ... 𝑀 ) ↔ 𝑎 ∈ ( 𝐽 ... 𝑀 ) ) ) |
| 48 |
47
|
anbi2d |
⊢ ( 𝑖 = 𝑎 → ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑎 ∈ ( 𝐽 ... 𝑀 ) ) ) ) |
| 49 |
48 35
|
imbi12d |
⊢ ( 𝑖 = 𝑎 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐽 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) ) ) |
| 50 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝐿 ∈ ℤ ) |
| 51 |
|
eluzelz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝐿 ) → 𝑀 ∈ ℤ ) |
| 52 |
5 51
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝑀 ∈ ℤ ) |
| 54 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 𝐽 ... 𝑀 ) → 𝑖 ∈ ℤ ) |
| 55 |
54
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝑖 ∈ ℤ ) |
| 56 |
4
|
zred |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝐿 ∈ ℝ ) |
| 58 |
|
elfzelz |
⊢ ( 𝐽 ∈ ( 𝐿 ... 𝑀 ) → 𝐽 ∈ ℤ ) |
| 59 |
10 58
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
| 60 |
59
|
zred |
⊢ ( 𝜑 → 𝐽 ∈ ℝ ) |
| 61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝐽 ∈ ℝ ) |
| 62 |
54
|
zred |
⊢ ( 𝑖 ∈ ( 𝐽 ... 𝑀 ) → 𝑖 ∈ ℝ ) |
| 63 |
62
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝑖 ∈ ℝ ) |
| 64 |
|
elfzle1 |
⊢ ( 𝐽 ∈ ( 𝐿 ... 𝑀 ) → 𝐿 ≤ 𝐽 ) |
| 65 |
10 64
|
syl |
⊢ ( 𝜑 → 𝐿 ≤ 𝐽 ) |
| 66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝐿 ≤ 𝐽 ) |
| 67 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 𝐽 ... 𝑀 ) → 𝐽 ≤ 𝑖 ) |
| 68 |
67
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝐽 ≤ 𝑖 ) |
| 69 |
57 61 63 66 68
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝐿 ≤ 𝑖 ) |
| 70 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 𝐽 ... 𝑀 ) → 𝑖 ≤ 𝑀 ) |
| 71 |
70
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝑖 ≤ 𝑀 ) |
| 72 |
50 53 55 69 71
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) |
| 73 |
72 6
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
| 74 |
46 49 73
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐽 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) |
| 75 |
43 74 39
|
seqcl |
⊢ ( 𝜑 → ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ∈ ℝ ) |
| 76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ∈ ℝ ) |
| 77 |
9
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝐸 ∈ ℝ ) |
| 79 |
|
remulcl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 · 𝑏 ) ∈ ℝ ) |
| 80 |
79
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) → ( 𝑎 · 𝑏 ) ∈ ℝ ) |
| 81 |
|
simp1 |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → 𝑎 ∈ ℝ ) |
| 82 |
81
|
recnd |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → 𝑎 ∈ ℂ ) |
| 83 |
|
simp2 |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → 𝑏 ∈ ℝ ) |
| 84 |
83
|
recnd |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → 𝑏 ∈ ℂ ) |
| 85 |
|
simp3 |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → 𝑐 ∈ ℝ ) |
| 86 |
85
|
recnd |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → 𝑐 ∈ ℂ ) |
| 87 |
82 84 86
|
mulassd |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( ( 𝑎 · 𝑏 ) · 𝑐 ) = ( 𝑎 · ( 𝑏 · 𝑐 ) ) ) |
| 88 |
87
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ) ) → ( ( 𝑎 · 𝑏 ) · 𝑐 ) = ( 𝑎 · ( 𝑏 · 𝑐 ) ) ) |
| 89 |
59
|
zcnd |
⊢ ( 𝜑 → 𝐽 ∈ ℂ ) |
| 90 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 91 |
89 90
|
npcand |
⊢ ( 𝜑 → ( ( 𝐽 − 1 ) + 1 ) = 𝐽 ) |
| 92 |
91
|
fveq2d |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( ( 𝐽 − 1 ) + 1 ) ) = ( ℤ≥ ‘ 𝐽 ) ) |
| 93 |
43 92
|
eleqtrrd |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ ( ( 𝐽 − 1 ) + 1 ) ) ) |
| 94 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝑀 ∈ ( ℤ≥ ‘ ( ( 𝐽 − 1 ) + 1 ) ) ) |
| 95 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝐿 ∈ ℤ ) |
| 96 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝐽 ∈ ℤ ) |
| 97 |
|
1zzd |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 1 ∈ ℤ ) |
| 98 |
96 97
|
zsubcld |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐽 − 1 ) ∈ ℤ ) |
| 99 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ¬ 𝐽 = 𝐿 ) |
| 100 |
|
eqcom |
⊢ ( 𝐽 = 𝐿 ↔ 𝐿 = 𝐽 ) |
| 101 |
99 100
|
sylnib |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ¬ 𝐿 = 𝐽 ) |
| 102 |
56 60
|
leloed |
⊢ ( 𝜑 → ( 𝐿 ≤ 𝐽 ↔ ( 𝐿 < 𝐽 ∨ 𝐿 = 𝐽 ) ) ) |
| 103 |
65 102
|
mpbid |
⊢ ( 𝜑 → ( 𝐿 < 𝐽 ∨ 𝐿 = 𝐽 ) ) |
| 104 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐿 < 𝐽 ∨ 𝐿 = 𝐽 ) ) |
| 105 |
|
orel2 |
⊢ ( ¬ 𝐿 = 𝐽 → ( ( 𝐿 < 𝐽 ∨ 𝐿 = 𝐽 ) → 𝐿 < 𝐽 ) ) |
| 106 |
101 104 105
|
sylc |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝐿 < 𝐽 ) |
| 107 |
|
zltlem1 |
⊢ ( ( 𝐿 ∈ ℤ ∧ 𝐽 ∈ ℤ ) → ( 𝐿 < 𝐽 ↔ 𝐿 ≤ ( 𝐽 − 1 ) ) ) |
| 108 |
4 59 107
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 < 𝐽 ↔ 𝐿 ≤ ( 𝐽 − 1 ) ) ) |
| 109 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐿 < 𝐽 ↔ 𝐿 ≤ ( 𝐽 − 1 ) ) ) |
| 110 |
106 109
|
mpbid |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝐿 ≤ ( 𝐽 − 1 ) ) |
| 111 |
|
eluz2 |
⊢ ( ( 𝐽 − 1 ) ∈ ( ℤ≥ ‘ 𝐿 ) ↔ ( 𝐿 ∈ ℤ ∧ ( 𝐽 − 1 ) ∈ ℤ ∧ 𝐿 ≤ ( 𝐽 − 1 ) ) ) |
| 112 |
95 98 110 111
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐽 − 1 ) ∈ ( ℤ≥ ‘ 𝐿 ) ) |
| 113 |
|
nfv |
⊢ Ⅎ 𝑖 ¬ 𝐽 = 𝐿 |
| 114 |
2 113
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) |
| 115 |
114 26
|
nfan |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) |
| 116 |
115 30
|
nfim |
⊢ Ⅎ 𝑖 ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) |
| 117 |
32
|
anbi2d |
⊢ ( 𝑖 = 𝑎 → ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) ↔ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) ) ) |
| 118 |
117 35
|
imbi12d |
⊢ ( 𝑖 = 𝑎 → ( ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) ↔ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) ) ) |
| 119 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
| 120 |
116 118 119
|
chvarfv |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) |
| 121 |
80 88 94 112 120
|
seqsplit |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝑀 ) = ( ( seq 𝐿 ( · , 𝐵 ) ‘ ( 𝐽 − 1 ) ) · ( seq ( ( 𝐽 − 1 ) + 1 ) ( · , 𝐵 ) ‘ 𝑀 ) ) ) |
| 122 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( ( 𝐽 − 1 ) + 1 ) = 𝐽 ) |
| 123 |
122
|
seqeq1d |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → seq ( ( 𝐽 − 1 ) + 1 ) ( · , 𝐵 ) = seq 𝐽 ( · , 𝐵 ) ) |
| 124 |
123
|
fveq1d |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq ( ( 𝐽 − 1 ) + 1 ) ( · , 𝐵 ) ‘ 𝑀 ) = ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) |
| 125 |
124
|
oveq2d |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( ( seq 𝐿 ( · , 𝐵 ) ‘ ( 𝐽 − 1 ) ) · ( seq ( ( 𝐽 − 1 ) + 1 ) ( · , 𝐵 ) ‘ 𝑀 ) ) = ( ( seq 𝐿 ( · , 𝐵 ) ‘ ( 𝐽 − 1 ) ) · ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) ) |
| 126 |
121 125
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝑀 ) = ( ( seq 𝐿 ( · , 𝐵 ) ‘ ( 𝐽 − 1 ) ) · ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) ) |
| 127 |
|
nfv |
⊢ Ⅎ 𝑖 𝑎 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) |
| 128 |
114 127
|
nfan |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) |
| 129 |
128 30
|
nfim |
⊢ Ⅎ 𝑖 ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) |
| 130 |
|
eleq1w |
⊢ ( 𝑖 = 𝑎 → ( 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ↔ 𝑎 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) ) |
| 131 |
130
|
anbi2d |
⊢ ( 𝑖 = 𝑎 → ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) ↔ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) ) ) |
| 132 |
131 35
|
imbi12d |
⊢ ( 𝑖 = 𝑎 → ( ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) ↔ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) ) ) |
| 133 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝐿 ∈ ℤ ) |
| 134 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝑀 ∈ ℤ ) |
| 135 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) → 𝑖 ∈ ℤ ) |
| 136 |
135
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝑖 ∈ ℤ ) |
| 137 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) → 𝐿 ≤ 𝑖 ) |
| 138 |
137
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝐿 ≤ 𝑖 ) |
| 139 |
135
|
zred |
⊢ ( 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) → 𝑖 ∈ ℝ ) |
| 140 |
139
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝑖 ∈ ℝ ) |
| 141 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝐽 ∈ ℝ ) |
| 142 |
52
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 143 |
142
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝑀 ∈ ℝ ) |
| 144 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 145 |
60 144
|
resubcld |
⊢ ( 𝜑 → ( 𝐽 − 1 ) ∈ ℝ ) |
| 146 |
145
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → ( 𝐽 − 1 ) ∈ ℝ ) |
| 147 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) → 𝑖 ≤ ( 𝐽 − 1 ) ) |
| 148 |
147
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝑖 ≤ ( 𝐽 − 1 ) ) |
| 149 |
60
|
lem1d |
⊢ ( 𝜑 → ( 𝐽 − 1 ) ≤ 𝐽 ) |
| 150 |
149
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → ( 𝐽 − 1 ) ≤ 𝐽 ) |
| 151 |
140 146 141 148 150
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝑖 ≤ 𝐽 ) |
| 152 |
|
elfzle2 |
⊢ ( 𝐽 ∈ ( 𝐿 ... 𝑀 ) → 𝐽 ≤ 𝑀 ) |
| 153 |
10 152
|
syl |
⊢ ( 𝜑 → 𝐽 ≤ 𝑀 ) |
| 154 |
153
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝐽 ≤ 𝑀 ) |
| 155 |
140 141 143 151 154
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝑖 ≤ 𝑀 ) |
| 156 |
133 134 136 138 155
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) |
| 157 |
156 6
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
| 158 |
157
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
| 159 |
129 132 158
|
chvarfv |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) |
| 160 |
38
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) → ( 𝑎 · 𝑗 ) ∈ ℝ ) |
| 161 |
112 159 160
|
seqcl |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ ( 𝐽 − 1 ) ) ∈ ℝ ) |
| 162 |
|
1red |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 1 ∈ ℝ ) |
| 163 |
|
eqid |
⊢ seq 𝐽 ( · , 𝐵 ) = seq 𝐽 ( · , 𝐵 ) |
| 164 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝐽 ) ) |
| 165 |
|
eluzfz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝐽 ) → 𝑀 ∈ ( 𝐽 ... 𝑀 ) ) |
| 166 |
43 165
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐽 ... 𝑀 ) ) |
| 167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝑀 ∈ ( 𝐽 ... 𝑀 ) ) |
| 168 |
73
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
| 169 |
72 7
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 0 ≤ ( 𝐵 ‘ 𝑖 ) ) |
| 170 |
169
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 0 ≤ ( 𝐵 ‘ 𝑖 ) ) |
| 171 |
72 8
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ≤ 1 ) |
| 172 |
171
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ≤ 1 ) |
| 173 |
1 114 163 96 164 167 168 170 172
|
fmul01 |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 0 ≤ ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ∧ ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ≤ 1 ) ) |
| 174 |
173
|
simpld |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 0 ≤ ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) |
| 175 |
|
eqid |
⊢ seq 𝐿 ( · , 𝐵 ) = seq 𝐿 ( · , 𝐵 ) |
| 176 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝐿 ) ) |
| 177 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 178 |
59 177
|
zsubcld |
⊢ ( 𝜑 → ( 𝐽 − 1 ) ∈ ℤ ) |
| 179 |
4 52 178
|
3jca |
⊢ ( 𝜑 → ( 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( 𝐽 − 1 ) ∈ ℤ ) ) |
| 180 |
179
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( 𝐽 − 1 ) ∈ ℤ ) ) |
| 181 |
145 60 142
|
3jca |
⊢ ( 𝜑 → ( ( 𝐽 − 1 ) ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 182 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( ( 𝐽 − 1 ) ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 183 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝐽 ∈ ℝ ) |
| 184 |
183
|
lem1d |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐽 − 1 ) ≤ 𝐽 ) |
| 185 |
153
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝐽 ≤ 𝑀 ) |
| 186 |
184 185
|
jca |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( ( 𝐽 − 1 ) ≤ 𝐽 ∧ 𝐽 ≤ 𝑀 ) ) |
| 187 |
|
letr |
⊢ ( ( ( 𝐽 − 1 ) ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( ( 𝐽 − 1 ) ≤ 𝐽 ∧ 𝐽 ≤ 𝑀 ) → ( 𝐽 − 1 ) ≤ 𝑀 ) ) |
| 188 |
182 186 187
|
sylc |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐽 − 1 ) ≤ 𝑀 ) |
| 189 |
110 188
|
jca |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐿 ≤ ( 𝐽 − 1 ) ∧ ( 𝐽 − 1 ) ≤ 𝑀 ) ) |
| 190 |
|
elfz2 |
⊢ ( ( 𝐽 − 1 ) ∈ ( 𝐿 ... 𝑀 ) ↔ ( ( 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( 𝐽 − 1 ) ∈ ℤ ) ∧ ( 𝐿 ≤ ( 𝐽 − 1 ) ∧ ( 𝐽 − 1 ) ≤ 𝑀 ) ) ) |
| 191 |
180 189 190
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐽 − 1 ) ∈ ( 𝐿 ... 𝑀 ) ) |
| 192 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → 0 ≤ ( 𝐵 ‘ 𝑖 ) ) |
| 193 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ≤ 1 ) |
| 194 |
1 114 175 95 176 191 119 192 193
|
fmul01 |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 0 ≤ ( seq 𝐿 ( · , 𝐵 ) ‘ ( 𝐽 − 1 ) ) ∧ ( seq 𝐿 ( · , 𝐵 ) ‘ ( 𝐽 − 1 ) ) ≤ 1 ) ) |
| 195 |
194
|
simprd |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ ( 𝐽 − 1 ) ) ≤ 1 ) |
| 196 |
161 162 76 174 195
|
lemul1ad |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( ( seq 𝐿 ( · , 𝐵 ) ‘ ( 𝐽 − 1 ) ) · ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) ≤ ( 1 · ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) ) |
| 197 |
126 196
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝑀 ) ≤ ( 1 · ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) ) |
| 198 |
76
|
recnd |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ∈ ℂ ) |
| 199 |
198
|
mullidd |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 1 · ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) = ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) |
| 200 |
197 199
|
breqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝑀 ) ≤ ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) |
| 201 |
1 2 163 59 43 73 169 171 9 11
|
fmul01lt1lem1 |
⊢ ( 𝜑 → ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) < 𝐸 ) |
| 202 |
201
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) < 𝐸 ) |
| 203 |
41 76 78 200 202
|
lelttrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝑀 ) < 𝐸 ) |
| 204 |
25 203
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐴 ‘ 𝑀 ) < 𝐸 ) |
| 205 |
24 204
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑀 ) < 𝐸 ) |