Step |
Hyp |
Ref |
Expression |
1 |
|
fmul01lt1lem2.1 |
⊢ Ⅎ 𝑖 𝐵 |
2 |
|
fmul01lt1lem2.2 |
⊢ Ⅎ 𝑖 𝜑 |
3 |
|
fmul01lt1lem2.3 |
⊢ 𝐴 = seq 𝐿 ( · , 𝐵 ) |
4 |
|
fmul01lt1lem2.4 |
⊢ ( 𝜑 → 𝐿 ∈ ℤ ) |
5 |
|
fmul01lt1lem2.5 |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝐿 ) ) |
6 |
|
fmul01lt1lem2.6 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
7 |
|
fmul01lt1lem2.7 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → 0 ≤ ( 𝐵 ‘ 𝑖 ) ) |
8 |
|
fmul01lt1lem2.8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ≤ 1 ) |
9 |
|
fmul01lt1lem2.9 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
10 |
|
fmul01lt1lem2.10 |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝐿 ... 𝑀 ) ) |
11 |
|
fmul01lt1lem2.11 |
⊢ ( 𝜑 → ( 𝐵 ‘ 𝐽 ) < 𝐸 ) |
12 |
|
nfv |
⊢ Ⅎ 𝑖 𝐽 = 𝐿 |
13 |
2 12
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝐽 = 𝐿 ) |
14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 = 𝐿 ) → 𝐿 ∈ ℤ ) |
15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 = 𝐿 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝐿 ) ) |
16 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
17 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → 0 ≤ ( 𝐵 ‘ 𝑖 ) ) |
18 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ≤ 1 ) |
19 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 = 𝐿 ) → 𝐸 ∈ ℝ+ ) |
20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐽 = 𝐿 ) → 𝐽 = 𝐿 ) |
21 |
20
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐽 = 𝐿 ) → ( 𝐵 ‘ 𝐽 ) = ( 𝐵 ‘ 𝐿 ) ) |
22 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 = 𝐿 ) → ( 𝐵 ‘ 𝐽 ) < 𝐸 ) |
23 |
21 22
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝐽 = 𝐿 ) → ( 𝐵 ‘ 𝐿 ) < 𝐸 ) |
24 |
1 13 3 14 15 16 17 18 19 23
|
fmul01lt1lem1 |
⊢ ( ( 𝜑 ∧ 𝐽 = 𝐿 ) → ( 𝐴 ‘ 𝑀 ) < 𝐸 ) |
25 |
3
|
fveq1i |
⊢ ( 𝐴 ‘ 𝑀 ) = ( seq 𝐿 ( · , 𝐵 ) ‘ 𝑀 ) |
26 |
|
nfv |
⊢ Ⅎ 𝑖 𝑎 ∈ ( 𝐿 ... 𝑀 ) |
27 |
2 26
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) |
28 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑎 |
29 |
1 28
|
nffv |
⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝑎 ) |
30 |
29
|
nfel1 |
⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝑎 ) ∈ ℝ |
31 |
27 30
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) |
32 |
|
eleq1w |
⊢ ( 𝑖 = 𝑎 → ( 𝑖 ∈ ( 𝐿 ... 𝑀 ) ↔ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) ) |
33 |
32
|
anbi2d |
⊢ ( 𝑖 = 𝑎 → ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) ) ) |
34 |
|
fveq2 |
⊢ ( 𝑖 = 𝑎 → ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑎 ) ) |
35 |
34
|
eleq1d |
⊢ ( 𝑖 = 𝑎 → ( ( 𝐵 ‘ 𝑖 ) ∈ ℝ ↔ ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) ) |
36 |
33 35
|
imbi12d |
⊢ ( 𝑖 = 𝑎 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) ) ) |
37 |
31 36 6
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) |
38 |
|
remulcl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑎 · 𝑗 ) ∈ ℝ ) |
39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) → ( 𝑎 · 𝑗 ) ∈ ℝ ) |
40 |
5 37 39
|
seqcl |
⊢ ( 𝜑 → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝑀 ) ∈ ℝ ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝑀 ) ∈ ℝ ) |
42 |
|
elfzuz3 |
⊢ ( 𝐽 ∈ ( 𝐿 ... 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝐽 ) ) |
43 |
10 42
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝐽 ) ) |
44 |
|
nfv |
⊢ Ⅎ 𝑖 𝑎 ∈ ( 𝐽 ... 𝑀 ) |
45 |
2 44
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑎 ∈ ( 𝐽 ... 𝑀 ) ) |
46 |
45 30
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐽 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) |
47 |
|
eleq1w |
⊢ ( 𝑖 = 𝑎 → ( 𝑖 ∈ ( 𝐽 ... 𝑀 ) ↔ 𝑎 ∈ ( 𝐽 ... 𝑀 ) ) ) |
48 |
47
|
anbi2d |
⊢ ( 𝑖 = 𝑎 → ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑎 ∈ ( 𝐽 ... 𝑀 ) ) ) ) |
49 |
48 35
|
imbi12d |
⊢ ( 𝑖 = 𝑎 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐽 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) ) ) |
50 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝐿 ∈ ℤ ) |
51 |
|
eluzelz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝐿 ) → 𝑀 ∈ ℤ ) |
52 |
5 51
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝑀 ∈ ℤ ) |
54 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 𝐽 ... 𝑀 ) → 𝑖 ∈ ℤ ) |
55 |
54
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝑖 ∈ ℤ ) |
56 |
4
|
zred |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝐿 ∈ ℝ ) |
58 |
|
elfzelz |
⊢ ( 𝐽 ∈ ( 𝐿 ... 𝑀 ) → 𝐽 ∈ ℤ ) |
59 |
10 58
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
60 |
59
|
zred |
⊢ ( 𝜑 → 𝐽 ∈ ℝ ) |
61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝐽 ∈ ℝ ) |
62 |
54
|
zred |
⊢ ( 𝑖 ∈ ( 𝐽 ... 𝑀 ) → 𝑖 ∈ ℝ ) |
63 |
62
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝑖 ∈ ℝ ) |
64 |
|
elfzle1 |
⊢ ( 𝐽 ∈ ( 𝐿 ... 𝑀 ) → 𝐿 ≤ 𝐽 ) |
65 |
10 64
|
syl |
⊢ ( 𝜑 → 𝐿 ≤ 𝐽 ) |
66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝐿 ≤ 𝐽 ) |
67 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 𝐽 ... 𝑀 ) → 𝐽 ≤ 𝑖 ) |
68 |
67
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝐽 ≤ 𝑖 ) |
69 |
57 61 63 66 68
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝐿 ≤ 𝑖 ) |
70 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 𝐽 ... 𝑀 ) → 𝑖 ≤ 𝑀 ) |
71 |
70
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝑖 ≤ 𝑀 ) |
72 |
50 53 55 69 71
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) |
73 |
72 6
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
74 |
46 49 73
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐽 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) |
75 |
43 74 39
|
seqcl |
⊢ ( 𝜑 → ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ∈ ℝ ) |
76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ∈ ℝ ) |
77 |
9
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝐸 ∈ ℝ ) |
79 |
|
remulcl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 · 𝑏 ) ∈ ℝ ) |
80 |
79
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) → ( 𝑎 · 𝑏 ) ∈ ℝ ) |
81 |
|
simp1 |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → 𝑎 ∈ ℝ ) |
82 |
81
|
recnd |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → 𝑎 ∈ ℂ ) |
83 |
|
simp2 |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → 𝑏 ∈ ℝ ) |
84 |
83
|
recnd |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → 𝑏 ∈ ℂ ) |
85 |
|
simp3 |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → 𝑐 ∈ ℝ ) |
86 |
85
|
recnd |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → 𝑐 ∈ ℂ ) |
87 |
82 84 86
|
mulassd |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( ( 𝑎 · 𝑏 ) · 𝑐 ) = ( 𝑎 · ( 𝑏 · 𝑐 ) ) ) |
88 |
87
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ ) ) → ( ( 𝑎 · 𝑏 ) · 𝑐 ) = ( 𝑎 · ( 𝑏 · 𝑐 ) ) ) |
89 |
59
|
zcnd |
⊢ ( 𝜑 → 𝐽 ∈ ℂ ) |
90 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
91 |
89 90
|
npcand |
⊢ ( 𝜑 → ( ( 𝐽 − 1 ) + 1 ) = 𝐽 ) |
92 |
91
|
fveq2d |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( ( 𝐽 − 1 ) + 1 ) ) = ( ℤ≥ ‘ 𝐽 ) ) |
93 |
43 92
|
eleqtrrd |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ ( ( 𝐽 − 1 ) + 1 ) ) ) |
94 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝑀 ∈ ( ℤ≥ ‘ ( ( 𝐽 − 1 ) + 1 ) ) ) |
95 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝐿 ∈ ℤ ) |
96 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝐽 ∈ ℤ ) |
97 |
|
1zzd |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 1 ∈ ℤ ) |
98 |
96 97
|
zsubcld |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐽 − 1 ) ∈ ℤ ) |
99 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ¬ 𝐽 = 𝐿 ) |
100 |
|
eqcom |
⊢ ( 𝐽 = 𝐿 ↔ 𝐿 = 𝐽 ) |
101 |
99 100
|
sylnib |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ¬ 𝐿 = 𝐽 ) |
102 |
56 60
|
leloed |
⊢ ( 𝜑 → ( 𝐿 ≤ 𝐽 ↔ ( 𝐿 < 𝐽 ∨ 𝐿 = 𝐽 ) ) ) |
103 |
65 102
|
mpbid |
⊢ ( 𝜑 → ( 𝐿 < 𝐽 ∨ 𝐿 = 𝐽 ) ) |
104 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐿 < 𝐽 ∨ 𝐿 = 𝐽 ) ) |
105 |
|
orel2 |
⊢ ( ¬ 𝐿 = 𝐽 → ( ( 𝐿 < 𝐽 ∨ 𝐿 = 𝐽 ) → 𝐿 < 𝐽 ) ) |
106 |
101 104 105
|
sylc |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝐿 < 𝐽 ) |
107 |
|
zltlem1 |
⊢ ( ( 𝐿 ∈ ℤ ∧ 𝐽 ∈ ℤ ) → ( 𝐿 < 𝐽 ↔ 𝐿 ≤ ( 𝐽 − 1 ) ) ) |
108 |
4 59 107
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 < 𝐽 ↔ 𝐿 ≤ ( 𝐽 − 1 ) ) ) |
109 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐿 < 𝐽 ↔ 𝐿 ≤ ( 𝐽 − 1 ) ) ) |
110 |
106 109
|
mpbid |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝐿 ≤ ( 𝐽 − 1 ) ) |
111 |
|
eluz2 |
⊢ ( ( 𝐽 − 1 ) ∈ ( ℤ≥ ‘ 𝐿 ) ↔ ( 𝐿 ∈ ℤ ∧ ( 𝐽 − 1 ) ∈ ℤ ∧ 𝐿 ≤ ( 𝐽 − 1 ) ) ) |
112 |
95 98 110 111
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐽 − 1 ) ∈ ( ℤ≥ ‘ 𝐿 ) ) |
113 |
|
nfv |
⊢ Ⅎ 𝑖 ¬ 𝐽 = 𝐿 |
114 |
2 113
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) |
115 |
114 26
|
nfan |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) |
116 |
115 30
|
nfim |
⊢ Ⅎ 𝑖 ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) |
117 |
32
|
anbi2d |
⊢ ( 𝑖 = 𝑎 → ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) ↔ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) ) ) |
118 |
117 35
|
imbi12d |
⊢ ( 𝑖 = 𝑎 → ( ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) ↔ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) ) ) |
119 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
120 |
116 118 119
|
chvarfv |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) |
121 |
80 88 94 112 120
|
seqsplit |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝑀 ) = ( ( seq 𝐿 ( · , 𝐵 ) ‘ ( 𝐽 − 1 ) ) · ( seq ( ( 𝐽 − 1 ) + 1 ) ( · , 𝐵 ) ‘ 𝑀 ) ) ) |
122 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( ( 𝐽 − 1 ) + 1 ) = 𝐽 ) |
123 |
122
|
seqeq1d |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → seq ( ( 𝐽 − 1 ) + 1 ) ( · , 𝐵 ) = seq 𝐽 ( · , 𝐵 ) ) |
124 |
123
|
fveq1d |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq ( ( 𝐽 − 1 ) + 1 ) ( · , 𝐵 ) ‘ 𝑀 ) = ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) |
125 |
124
|
oveq2d |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( ( seq 𝐿 ( · , 𝐵 ) ‘ ( 𝐽 − 1 ) ) · ( seq ( ( 𝐽 − 1 ) + 1 ) ( · , 𝐵 ) ‘ 𝑀 ) ) = ( ( seq 𝐿 ( · , 𝐵 ) ‘ ( 𝐽 − 1 ) ) · ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) ) |
126 |
121 125
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝑀 ) = ( ( seq 𝐿 ( · , 𝐵 ) ‘ ( 𝐽 − 1 ) ) · ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) ) |
127 |
|
nfv |
⊢ Ⅎ 𝑖 𝑎 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) |
128 |
114 127
|
nfan |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) |
129 |
128 30
|
nfim |
⊢ Ⅎ 𝑖 ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) |
130 |
|
eleq1w |
⊢ ( 𝑖 = 𝑎 → ( 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ↔ 𝑎 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) ) |
131 |
130
|
anbi2d |
⊢ ( 𝑖 = 𝑎 → ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) ↔ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) ) ) |
132 |
131 35
|
imbi12d |
⊢ ( 𝑖 = 𝑎 → ( ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) ↔ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) ) ) |
133 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝐿 ∈ ℤ ) |
134 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝑀 ∈ ℤ ) |
135 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) → 𝑖 ∈ ℤ ) |
136 |
135
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝑖 ∈ ℤ ) |
137 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) → 𝐿 ≤ 𝑖 ) |
138 |
137
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝐿 ≤ 𝑖 ) |
139 |
135
|
zred |
⊢ ( 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) → 𝑖 ∈ ℝ ) |
140 |
139
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝑖 ∈ ℝ ) |
141 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝐽 ∈ ℝ ) |
142 |
52
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
143 |
142
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝑀 ∈ ℝ ) |
144 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
145 |
60 144
|
resubcld |
⊢ ( 𝜑 → ( 𝐽 − 1 ) ∈ ℝ ) |
146 |
145
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → ( 𝐽 − 1 ) ∈ ℝ ) |
147 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) → 𝑖 ≤ ( 𝐽 − 1 ) ) |
148 |
147
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝑖 ≤ ( 𝐽 − 1 ) ) |
149 |
60
|
lem1d |
⊢ ( 𝜑 → ( 𝐽 − 1 ) ≤ 𝐽 ) |
150 |
149
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → ( 𝐽 − 1 ) ≤ 𝐽 ) |
151 |
140 146 141 148 150
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝑖 ≤ 𝐽 ) |
152 |
|
elfzle2 |
⊢ ( 𝐽 ∈ ( 𝐿 ... 𝑀 ) → 𝐽 ≤ 𝑀 ) |
153 |
10 152
|
syl |
⊢ ( 𝜑 → 𝐽 ≤ 𝑀 ) |
154 |
153
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝐽 ≤ 𝑀 ) |
155 |
140 141 143 151 154
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝑖 ≤ 𝑀 ) |
156 |
133 134 136 138 155
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) |
157 |
156 6
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
158 |
157
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
159 |
129 132 158
|
chvarfv |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑎 ∈ ( 𝐿 ... ( 𝐽 − 1 ) ) ) → ( 𝐵 ‘ 𝑎 ) ∈ ℝ ) |
160 |
38
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) → ( 𝑎 · 𝑗 ) ∈ ℝ ) |
161 |
112 159 160
|
seqcl |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ ( 𝐽 − 1 ) ) ∈ ℝ ) |
162 |
|
1red |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 1 ∈ ℝ ) |
163 |
|
eqid |
⊢ seq 𝐽 ( · , 𝐵 ) = seq 𝐽 ( · , 𝐵 ) |
164 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝐽 ) ) |
165 |
|
eluzfz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝐽 ) → 𝑀 ∈ ( 𝐽 ... 𝑀 ) ) |
166 |
43 165
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐽 ... 𝑀 ) ) |
167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝑀 ∈ ( 𝐽 ... 𝑀 ) ) |
168 |
73
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
169 |
72 7
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 0 ≤ ( 𝐵 ‘ 𝑖 ) ) |
170 |
169
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → 0 ≤ ( 𝐵 ‘ 𝑖 ) ) |
171 |
72 8
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ≤ 1 ) |
172 |
171
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐽 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ≤ 1 ) |
173 |
1 114 163 96 164 167 168 170 172
|
fmul01 |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 0 ≤ ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ∧ ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ≤ 1 ) ) |
174 |
173
|
simpld |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 0 ≤ ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) |
175 |
|
eqid |
⊢ seq 𝐿 ( · , 𝐵 ) = seq 𝐿 ( · , 𝐵 ) |
176 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝐿 ) ) |
177 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
178 |
59 177
|
zsubcld |
⊢ ( 𝜑 → ( 𝐽 − 1 ) ∈ ℤ ) |
179 |
4 52 178
|
3jca |
⊢ ( 𝜑 → ( 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( 𝐽 − 1 ) ∈ ℤ ) ) |
180 |
179
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( 𝐽 − 1 ) ∈ ℤ ) ) |
181 |
145 60 142
|
3jca |
⊢ ( 𝜑 → ( ( 𝐽 − 1 ) ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
182 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( ( 𝐽 − 1 ) ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
183 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝐽 ∈ ℝ ) |
184 |
183
|
lem1d |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐽 − 1 ) ≤ 𝐽 ) |
185 |
153
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → 𝐽 ≤ 𝑀 ) |
186 |
184 185
|
jca |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( ( 𝐽 − 1 ) ≤ 𝐽 ∧ 𝐽 ≤ 𝑀 ) ) |
187 |
|
letr |
⊢ ( ( ( 𝐽 − 1 ) ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( ( 𝐽 − 1 ) ≤ 𝐽 ∧ 𝐽 ≤ 𝑀 ) → ( 𝐽 − 1 ) ≤ 𝑀 ) ) |
188 |
182 186 187
|
sylc |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐽 − 1 ) ≤ 𝑀 ) |
189 |
110 188
|
jca |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐿 ≤ ( 𝐽 − 1 ) ∧ ( 𝐽 − 1 ) ≤ 𝑀 ) ) |
190 |
|
elfz2 |
⊢ ( ( 𝐽 − 1 ) ∈ ( 𝐿 ... 𝑀 ) ↔ ( ( 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( 𝐽 − 1 ) ∈ ℤ ) ∧ ( 𝐿 ≤ ( 𝐽 − 1 ) ∧ ( 𝐽 − 1 ) ≤ 𝑀 ) ) ) |
191 |
180 189 190
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐽 − 1 ) ∈ ( 𝐿 ... 𝑀 ) ) |
192 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → 0 ≤ ( 𝐵 ‘ 𝑖 ) ) |
193 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) ∧ 𝑖 ∈ ( 𝐿 ... 𝑀 ) ) → ( 𝐵 ‘ 𝑖 ) ≤ 1 ) |
194 |
1 114 175 95 176 191 119 192 193
|
fmul01 |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 0 ≤ ( seq 𝐿 ( · , 𝐵 ) ‘ ( 𝐽 − 1 ) ) ∧ ( seq 𝐿 ( · , 𝐵 ) ‘ ( 𝐽 − 1 ) ) ≤ 1 ) ) |
195 |
194
|
simprd |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ ( 𝐽 − 1 ) ) ≤ 1 ) |
196 |
161 162 76 174 195
|
lemul1ad |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( ( seq 𝐿 ( · , 𝐵 ) ‘ ( 𝐽 − 1 ) ) · ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) ≤ ( 1 · ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) ) |
197 |
126 196
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝑀 ) ≤ ( 1 · ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) ) |
198 |
76
|
recnd |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ∈ ℂ ) |
199 |
198
|
mulid2d |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 1 · ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) = ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) |
200 |
197 199
|
breqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝑀 ) ≤ ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) ) |
201 |
1 2 163 59 43 73 169 171 9 11
|
fmul01lt1lem1 |
⊢ ( 𝜑 → ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) < 𝐸 ) |
202 |
201
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐽 ( · , 𝐵 ) ‘ 𝑀 ) < 𝐸 ) |
203 |
41 76 78 200 202
|
lelttrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( seq 𝐿 ( · , 𝐵 ) ‘ 𝑀 ) < 𝐸 ) |
204 |
25 203
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ ¬ 𝐽 = 𝐿 ) → ( 𝐴 ‘ 𝑀 ) < 𝐸 ) |
205 |
24 204
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑀 ) < 𝐸 ) |