Step |
Hyp |
Ref |
Expression |
1 |
|
fmulcl.1 |
⊢ 𝑃 = ( 𝑓 ∈ 𝑌 , 𝑔 ∈ 𝑌 ↦ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) |
2 |
|
fmulcl.2 |
⊢ 𝑋 = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) |
3 |
|
fmulcl.4 |
⊢ ( 𝜑 → 𝑁 ∈ ( 1 ... 𝑀 ) ) |
4 |
|
fmulcl.5 |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑀 ) ⟶ 𝑌 ) |
5 |
|
fmulcl.6 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ) |
6 |
|
fmulcl.7 |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
7 |
|
elfzuz |
⊢ ( 𝑁 ∈ ( 1 ... 𝑀 ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
9 |
|
elfzuz3 |
⊢ ( 𝑁 ∈ ( 1 ... 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
10 |
|
fzss2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝑀 ) ) |
11 |
3 9 10
|
3syl |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝑀 ) ) |
12 |
11
|
sselda |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 1 ... 𝑁 ) ) → ℎ ∈ ( 1 ... 𝑀 ) ) |
13 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 1 ... 𝑀 ) ) → ( 𝑈 ‘ ℎ ) ∈ 𝑌 ) |
14 |
12 13
|
syldan |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 1 ... 𝑁 ) ) → ( 𝑈 ‘ ℎ ) ∈ 𝑌 ) |
15 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) ) → ℎ ∈ 𝑌 ) |
16 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) ) → 𝑙 ∈ 𝑌 ) |
17 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) ) → 𝑇 ∈ V ) |
18 |
|
mptexg |
⊢ ( 𝑇 ∈ V → ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ∈ V ) |
19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ∈ V ) |
20 |
|
fveq1 |
⊢ ( 𝑓 = ℎ → ( 𝑓 ‘ 𝑡 ) = ( ℎ ‘ 𝑡 ) ) |
21 |
|
fveq1 |
⊢ ( 𝑔 = 𝑙 → ( 𝑔 ‘ 𝑡 ) = ( 𝑙 ‘ 𝑡 ) ) |
22 |
20 21
|
oveqan12d |
⊢ ( ( 𝑓 = ℎ ∧ 𝑔 = 𝑙 ) → ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) = ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) |
23 |
22
|
mpteq2dv |
⊢ ( ( 𝑓 = ℎ ∧ 𝑔 = 𝑙 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ) |
24 |
23 1
|
ovmpoga |
⊢ ( ( ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ∈ V ) → ( ℎ 𝑃 𝑙 ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ) |
25 |
15 16 19 24
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) ) → ( ℎ 𝑃 𝑙 ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ) |
26 |
|
3simpc |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) → ( ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) ) |
27 |
|
eleq1w |
⊢ ( 𝑓 = ℎ → ( 𝑓 ∈ 𝑌 ↔ ℎ ∈ 𝑌 ) ) |
28 |
27
|
3anbi2d |
⊢ ( 𝑓 = ℎ → ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ↔ ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ) ) |
29 |
20
|
oveq1d |
⊢ ( 𝑓 = ℎ → ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) = ( ( ℎ ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) |
30 |
29
|
mpteq2dv |
⊢ ( 𝑓 = ℎ → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) |
31 |
30
|
eleq1d |
⊢ ( 𝑓 = ℎ → ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ) ) |
32 |
28 31
|
imbi12d |
⊢ ( 𝑓 = ℎ → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ) ↔ ( ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ) ) ) |
33 |
|
eleq1w |
⊢ ( 𝑔 = 𝑙 → ( 𝑔 ∈ 𝑌 ↔ 𝑙 ∈ 𝑌 ) ) |
34 |
33
|
3anbi3d |
⊢ ( 𝑔 = 𝑙 → ( ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ↔ ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) ) ) |
35 |
21
|
oveq2d |
⊢ ( 𝑔 = 𝑙 → ( ( ℎ ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) = ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) |
36 |
35
|
mpteq2dv |
⊢ ( 𝑔 = 𝑙 → ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ) |
37 |
36
|
eleq1d |
⊢ ( 𝑔 = 𝑙 → ( ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ∈ 𝑌 ) ) |
38 |
34 37
|
imbi12d |
⊢ ( 𝑔 = 𝑙 → ( ( ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ) ↔ ( ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ∈ 𝑌 ) ) ) |
39 |
32 38 5
|
vtocl2g |
⊢ ( ( ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) → ( ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ∈ 𝑌 ) ) |
40 |
26 39
|
mpcom |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ∈ 𝑌 ) |
41 |
40
|
3expb |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ∈ 𝑌 ) |
42 |
25 41
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) ) → ( ℎ 𝑃 𝑙 ) ∈ 𝑌 ) |
43 |
8 14 42
|
seqcl |
⊢ ( 𝜑 → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ∈ 𝑌 ) |
44 |
2 43
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ 𝑌 ) |