Metamath Proof Explorer


Theorem fmuldfeq

Description: X and Z are two equivalent definitions of the finite product of real functions. Y is a set of real functions from a common domain T, Y is closed under function multiplication and U is a finite sequence of functions in Y. M is the number of functions multiplied together. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fmuldfeq.1 𝑖 𝜑
fmuldfeq.2 𝑡 𝑌
fmuldfeq.3 𝑃 = ( 𝑓𝑌 , 𝑔𝑌 ↦ ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) )
fmuldfeq.4 𝑋 = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 )
fmuldfeq.5 𝐹 = ( 𝑡𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) )
fmuldfeq.6 𝑍 = ( 𝑡𝑇 ↦ ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) )
fmuldfeq.7 ( 𝜑𝑇 ∈ V )
fmuldfeq.8 ( 𝜑𝑀 ∈ ℕ )
fmuldfeq.9 ( 𝜑𝑈 : ( 1 ... 𝑀 ) ⟶ 𝑌 )
fmuldfeq.10 ( ( 𝜑𝑓𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ )
fmuldfeq.11 ( ( 𝜑𝑓𝑌𝑔𝑌 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝑌 )
Assertion fmuldfeq ( ( 𝜑𝑡𝑇 ) → ( 𝑋𝑡 ) = ( 𝑍𝑡 ) )

Proof

Step Hyp Ref Expression
1 fmuldfeq.1 𝑖 𝜑
2 fmuldfeq.2 𝑡 𝑌
3 fmuldfeq.3 𝑃 = ( 𝑓𝑌 , 𝑔𝑌 ↦ ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) )
4 fmuldfeq.4 𝑋 = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 )
5 fmuldfeq.5 𝐹 = ( 𝑡𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) )
6 fmuldfeq.6 𝑍 = ( 𝑡𝑇 ↦ ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) )
7 fmuldfeq.7 ( 𝜑𝑇 ∈ V )
8 fmuldfeq.8 ( 𝜑𝑀 ∈ ℕ )
9 fmuldfeq.9 ( 𝜑𝑈 : ( 1 ... 𝑀 ) ⟶ 𝑌 )
10 fmuldfeq.10 ( ( 𝜑𝑓𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ )
11 fmuldfeq.11 ( ( 𝜑𝑓𝑌𝑔𝑌 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝑌 )
12 1zzd ( ( 𝜑𝑡𝑇 ) → 1 ∈ ℤ )
13 8 nnzd ( 𝜑𝑀 ∈ ℤ )
14 13 adantr ( ( 𝜑𝑡𝑇 ) → 𝑀 ∈ ℤ )
15 8 nnge1d ( 𝜑 → 1 ≤ 𝑀 )
16 15 adantr ( ( 𝜑𝑡𝑇 ) → 1 ≤ 𝑀 )
17 nnre ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ )
18 leid ( 𝑀 ∈ ℝ → 𝑀𝑀 )
19 8 17 18 3syl ( 𝜑𝑀𝑀 )
20 19 adantr ( ( 𝜑𝑡𝑇 ) → 𝑀𝑀 )
21 12 14 14 16 20 elfzd ( ( 𝜑𝑡𝑇 ) → 𝑀 ∈ ( 1 ... 𝑀 ) )
22 8 3ad2ant1 ( ( 𝜑𝑡𝑇𝑀 ∈ ( 1 ... 𝑀 ) ) → 𝑀 ∈ ℕ )
23 eleq1 ( 𝑚 = 1 → ( 𝑚 ∈ ( 1 ... 𝑀 ) ↔ 1 ∈ ( 1 ... 𝑀 ) ) )
24 23 3anbi3d ( 𝑚 = 1 → ( ( 𝜑𝑡𝑇𝑚 ∈ ( 1 ... 𝑀 ) ) ↔ ( 𝜑𝑡𝑇 ∧ 1 ∈ ( 1 ... 𝑀 ) ) ) )
25 fveq2 ( 𝑚 = 1 → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) )
26 25 fveq1d ( 𝑚 = 1 → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) )
27 fveq2 ( 𝑚 = 1 → ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 1 ) )
28 26 27 eqeq12d ( 𝑚 = 1 → ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) ↔ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 1 ) ) )
29 24 28 imbi12d ( 𝑚 = 1 → ( ( ( 𝜑𝑡𝑇𝑚 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) ) ↔ ( ( 𝜑𝑡𝑇 ∧ 1 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 1 ) ) ) )
30 eleq1 ( 𝑚 = 𝑛 → ( 𝑚 ∈ ( 1 ... 𝑀 ) ↔ 𝑛 ∈ ( 1 ... 𝑀 ) ) )
31 30 3anbi3d ( 𝑚 = 𝑛 → ( ( 𝜑𝑡𝑇𝑚 ∈ ( 1 ... 𝑀 ) ) ↔ ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) ) )
32 fveq2 ( 𝑚 = 𝑛 → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) )
33 32 fveq1d ( 𝑚 = 𝑛 → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) )
34 fveq2 ( 𝑚 = 𝑛 → ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) )
35 33 34 eqeq12d ( 𝑚 = 𝑛 → ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) ↔ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) )
36 31 35 imbi12d ( 𝑚 = 𝑛 → ( ( ( 𝜑𝑡𝑇𝑚 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) ) ↔ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ) )
37 eleq1 ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 ∈ ( 1 ... 𝑀 ) ↔ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) )
38 37 3anbi3d ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝜑𝑡𝑇𝑚 ∈ ( 1 ... 𝑀 ) ) ↔ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) )
39 fveq2 ( 𝑚 = ( 𝑛 + 1 ) → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) = ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) )
40 39 fveq1d ( 𝑚 = ( 𝑛 + 1 ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) ‘ 𝑡 ) )
41 fveq2 ( 𝑚 = ( 𝑛 + 1 ) → ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ ( 𝑛 + 1 ) ) )
42 40 41 eqeq12d ( 𝑚 = ( 𝑛 + 1 ) → ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) ↔ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ ( 𝑛 + 1 ) ) ) )
43 38 42 imbi12d ( 𝑚 = ( 𝑛 + 1 ) → ( ( ( 𝜑𝑡𝑇𝑚 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) ) ↔ ( ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ ( 𝑛 + 1 ) ) ) ) )
44 eleq1 ( 𝑚 = 𝑀 → ( 𝑚 ∈ ( 1 ... 𝑀 ) ↔ 𝑀 ∈ ( 1 ... 𝑀 ) ) )
45 44 3anbi3d ( 𝑚 = 𝑀 → ( ( 𝜑𝑡𝑇𝑚 ∈ ( 1 ... 𝑀 ) ) ↔ ( 𝜑𝑡𝑇𝑀 ∈ ( 1 ... 𝑀 ) ) ) )
46 fveq2 ( 𝑚 = 𝑀 → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) )
47 46 fveq1d ( 𝑚 = 𝑀 → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) )
48 fveq2 ( 𝑚 = 𝑀 → ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) )
49 47 48 eqeq12d ( 𝑚 = 𝑀 → ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) ↔ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) ) )
50 45 49 imbi12d ( 𝑚 = 𝑀 → ( ( ( 𝜑𝑡𝑇𝑚 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) ) ↔ ( ( 𝜑𝑡𝑇𝑀 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) ) ) )
51 1z 1 ∈ ℤ
52 seq1 ( 1 ∈ ℤ → ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 1 ) = ( ( 𝐹𝑡 ) ‘ 1 ) )
53 51 52 ax-mp ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 1 ) = ( ( 𝐹𝑡 ) ‘ 1 )
54 1zzd ( 𝜑 → 1 ∈ ℤ )
55 1le1 1 ≤ 1
56 55 a1i ( 𝜑 → 1 ≤ 1 )
57 54 13 54 56 15 elfzd ( 𝜑 → 1 ∈ ( 1 ... 𝑀 ) )
58 nfv 𝑖 𝑡𝑇
59 nfcv 𝑖 𝑇
60 nfmpt1 𝑖 ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) )
61 59 60 nfmpt 𝑖 ( 𝑡𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) )
62 5 61 nfcxfr 𝑖 𝐹
63 nfcv 𝑖 𝑡
64 62 63 nffv 𝑖 ( 𝐹𝑡 )
65 nfcv 𝑖 1
66 64 65 nffv 𝑖 ( ( 𝐹𝑡 ) ‘ 1 )
67 nffvmpt1 𝑖 ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 )
68 66 67 nfeq 𝑖 ( ( 𝐹𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 )
69 58 68 nfim 𝑖 ( 𝑡𝑇 → ( ( 𝐹𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) )
70 fveq2 ( 𝑖 = 1 → ( ( 𝐹𝑡 ) ‘ 𝑖 ) = ( ( 𝐹𝑡 ) ‘ 1 ) )
71 fveq2 ( 𝑖 = 1 → ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) )
72 70 71 eqeq12d ( 𝑖 = 1 → ( ( ( 𝐹𝑡 ) ‘ 𝑖 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) ↔ ( ( 𝐹𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) ) )
73 72 imbi2d ( 𝑖 = 1 → ( ( 𝑡𝑇 → ( ( 𝐹𝑡 ) ‘ 𝑖 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) ) ↔ ( 𝑡𝑇 → ( ( 𝐹𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) ) ) )
74 ovex ( 1 ... 𝑀 ) ∈ V
75 74 mptex ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ∈ V
76 5 fvmpt2 ( ( 𝑡𝑇 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ∈ V ) → ( 𝐹𝑡 ) = ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) )
77 75 76 mpan2 ( 𝑡𝑇 → ( 𝐹𝑡 ) = ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) )
78 77 fveq1d ( 𝑡𝑇 → ( ( 𝐹𝑡 ) ‘ 𝑖 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) )
79 69 73 78 vtoclg1f ( 1 ∈ ( 1 ... 𝑀 ) → ( 𝑡𝑇 → ( ( 𝐹𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) ) )
80 57 79 syl ( 𝜑 → ( 𝑡𝑇 → ( ( 𝐹𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) ) )
81 80 imp ( ( 𝜑𝑡𝑇 ) → ( ( 𝐹𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) )
82 eqid ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) = ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) )
83 fveq2 ( 𝑖 = 1 → ( 𝑈𝑖 ) = ( 𝑈 ‘ 1 ) )
84 83 fveq1d ( 𝑖 = 1 → ( ( 𝑈𝑖 ) ‘ 𝑡 ) = ( ( 𝑈 ‘ 1 ) ‘ 𝑡 ) )
85 57 adantr ( ( 𝜑𝑡𝑇 ) → 1 ∈ ( 1 ... 𝑀 ) )
86 9 57 ffvelrnd ( 𝜑 → ( 𝑈 ‘ 1 ) ∈ 𝑌 )
87 86 ancli ( 𝜑 → ( 𝜑 ∧ ( 𝑈 ‘ 1 ) ∈ 𝑌 ) )
88 eleq1 ( 𝑓 = ( 𝑈 ‘ 1 ) → ( 𝑓𝑌 ↔ ( 𝑈 ‘ 1 ) ∈ 𝑌 ) )
89 88 anbi2d ( 𝑓 = ( 𝑈 ‘ 1 ) → ( ( 𝜑𝑓𝑌 ) ↔ ( 𝜑 ∧ ( 𝑈 ‘ 1 ) ∈ 𝑌 ) ) )
90 feq1 ( 𝑓 = ( 𝑈 ‘ 1 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝑈 ‘ 1 ) : 𝑇 ⟶ ℝ ) )
91 89 90 imbi12d ( 𝑓 = ( 𝑈 ‘ 1 ) → ( ( ( 𝜑𝑓𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝑈 ‘ 1 ) ∈ 𝑌 ) → ( 𝑈 ‘ 1 ) : 𝑇 ⟶ ℝ ) ) )
92 10 a1i ( 𝑓𝑌 → ( ( 𝜑𝑓𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ ) )
93 91 92 vtoclga ( ( 𝑈 ‘ 1 ) ∈ 𝑌 → ( ( 𝜑 ∧ ( 𝑈 ‘ 1 ) ∈ 𝑌 ) → ( 𝑈 ‘ 1 ) : 𝑇 ⟶ ℝ ) )
94 86 87 93 sylc ( 𝜑 → ( 𝑈 ‘ 1 ) : 𝑇 ⟶ ℝ )
95 94 ffvelrnda ( ( 𝜑𝑡𝑇 ) → ( ( 𝑈 ‘ 1 ) ‘ 𝑡 ) ∈ ℝ )
96 82 84 85 95 fvmptd3 ( ( 𝜑𝑡𝑇 ) → ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) = ( ( 𝑈 ‘ 1 ) ‘ 𝑡 ) )
97 81 96 eqtrd ( ( 𝜑𝑡𝑇 ) → ( ( 𝐹𝑡 ) ‘ 1 ) = ( ( 𝑈 ‘ 1 ) ‘ 𝑡 ) )
98 seq1 ( 1 ∈ ℤ → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) = ( 𝑈 ‘ 1 ) )
99 51 98 ax-mp ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) = ( 𝑈 ‘ 1 )
100 99 fveq1i ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) = ( ( 𝑈 ‘ 1 ) ‘ 𝑡 )
101 97 100 eqtr4di ( ( 𝜑𝑡𝑇 ) → ( ( 𝐹𝑡 ) ‘ 1 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) )
102 53 101 eqtr2id ( ( 𝜑𝑡𝑇 ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 1 ) )
103 102 3adant3 ( ( 𝜑𝑡𝑇 ∧ 1 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 1 ) )
104 simp31 ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → 𝜑 )
105 simp1 ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → 𝑛 ∈ ℕ )
106 simp33 ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) )
107 105 106 jca ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑛 ∈ ℕ ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) )
108 elnnuz ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( ℤ ‘ 1 ) )
109 108 biimpi ( 𝑛 ∈ ℕ → 𝑛 ∈ ( ℤ ‘ 1 ) )
110 109 anim1i ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) → ( 𝑛 ∈ ( ℤ ‘ 1 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) )
111 peano2fzr ( ( 𝑛 ∈ ( ℤ ‘ 1 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) → 𝑛 ∈ ( 1 ... 𝑀 ) )
112 107 110 111 3syl ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → 𝑛 ∈ ( 1 ... 𝑀 ) )
113 simp32 ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → 𝑡𝑇 )
114 simp2 ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) )
115 104 113 112 114 mp3and ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) )
116 112 106 115 3jca ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) )
117 nfv 𝑓 𝜑
118 nfv 𝑓 𝑛 ∈ ( 1 ... 𝑀 )
119 nfv 𝑓 ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 )
120 nfcv 𝑓 1
121 nfmpo1 𝑓 ( 𝑓𝑌 , 𝑔𝑌 ↦ ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) )
122 3 121 nfcxfr 𝑓 𝑃
123 nfcv 𝑓 𝑈
124 120 122 123 nfseq 𝑓 seq 1 ( 𝑃 , 𝑈 )
125 nfcv 𝑓 𝑛
126 124 125 nffv 𝑓 ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 )
127 nfcv 𝑓 𝑡
128 126 127 nffv 𝑓 ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 )
129 nfcv 𝑓 ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 )
130 128 129 nfeq 𝑓 ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 )
131 118 119 130 nf3an 𝑓 ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) )
132 117 131 nfan 𝑓 ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) )
133 nfv 𝑔 𝜑
134 nfv 𝑔 𝑛 ∈ ( 1 ... 𝑀 )
135 nfv 𝑔 ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 )
136 nfcv 𝑔 1
137 nfmpo2 𝑔 ( 𝑓𝑌 , 𝑔𝑌 ↦ ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) )
138 3 137 nfcxfr 𝑔 𝑃
139 nfcv 𝑔 𝑈
140 136 138 139 nfseq 𝑔 seq 1 ( 𝑃 , 𝑈 )
141 nfcv 𝑔 𝑛
142 140 141 nffv 𝑔 ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 )
143 nfcv 𝑔 𝑡
144 142 143 nffv 𝑔 ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 )
145 nfcv 𝑔 ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 )
146 144 145 nfeq 𝑔 ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 )
147 134 135 146 nf3an 𝑔 ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) )
148 133 147 nfan 𝑔 ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) )
149 7 adantr ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ) → 𝑇 ∈ V )
150 9 adantr ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ) → 𝑈 : ( 1 ... 𝑀 ) ⟶ 𝑌 )
151 11 3adant1r ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ) ∧ 𝑓𝑌𝑔𝑌 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝑌 )
152 simpr1 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ) → 𝑛 ∈ ( 1 ... 𝑀 ) )
153 simpr2 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ) → ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) )
154 simpr3 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) )
155 10 adantlr ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ) ∧ 𝑓𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ )
156 132 148 2 3 5 149 150 151 152 153 154 155 fmuldfeqlem1 ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ) ∧ 𝑡𝑇 ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ ( 𝑛 + 1 ) ) )
157 104 116 113 156 syl21anc ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ ( 𝑛 + 1 ) ) )
158 157 3exp ( 𝑛 ∈ ℕ → ( ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) → ( ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ ( 𝑛 + 1 ) ) ) ) )
159 29 36 43 50 103 158 nnind ( 𝑀 ∈ ℕ → ( ( 𝜑𝑡𝑇𝑀 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) ) )
160 22 159 mpcom ( ( 𝜑𝑡𝑇𝑀 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) )
161 21 160 mpd3an3 ( ( 𝜑𝑡𝑇 ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) )
162 4 fveq1i ( 𝑋𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 )
163 162 a1i ( ( 𝜑𝑡𝑇 ) → ( 𝑋𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) )
164 simpr ( ( 𝜑𝑡𝑇 ) → 𝑡𝑇 )
165 elnnuz ( 𝑀 ∈ ℕ ↔ 𝑀 ∈ ( ℤ ‘ 1 ) )
166 8 165 sylib ( 𝜑𝑀 ∈ ( ℤ ‘ 1 ) )
167 166 adantr ( ( 𝜑𝑡𝑇 ) → 𝑀 ∈ ( ℤ ‘ 1 ) )
168 1 58 nfan 𝑖 ( 𝜑𝑡𝑇 )
169 nfv 𝑖 𝑘 ∈ ( 1 ... 𝑀 )
170 168 169 nfan 𝑖 ( ( 𝜑𝑡𝑇 ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) )
171 nfcv 𝑖 𝑘
172 64 171 nffv 𝑖 ( ( 𝐹𝑡 ) ‘ 𝑘 )
173 172 nfel1 𝑖 ( ( 𝐹𝑡 ) ‘ 𝑘 ) ∈ ℝ
174 170 173 nfim 𝑖 ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹𝑡 ) ‘ 𝑘 ) ∈ ℝ )
175 eleq1 ( 𝑖 = 𝑘 → ( 𝑖 ∈ ( 1 ... 𝑀 ) ↔ 𝑘 ∈ ( 1 ... 𝑀 ) ) )
176 175 anbi2d ( 𝑖 = 𝑘 → ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ↔ ( ( 𝜑𝑡𝑇 ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) ) )
177 fveq2 ( 𝑖 = 𝑘 → ( ( 𝐹𝑡 ) ‘ 𝑖 ) = ( ( 𝐹𝑡 ) ‘ 𝑘 ) )
178 177 eleq1d ( 𝑖 = 𝑘 → ( ( ( 𝐹𝑡 ) ‘ 𝑖 ) ∈ ℝ ↔ ( ( 𝐹𝑡 ) ‘ 𝑘 ) ∈ ℝ ) )
179 176 178 imbi12d ( 𝑖 = 𝑘 → ( ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹𝑡 ) ‘ 𝑖 ) ∈ ℝ ) ↔ ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹𝑡 ) ‘ 𝑘 ) ∈ ℝ ) ) )
180 78 ad2antlr ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹𝑡 ) ‘ 𝑖 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) )
181 simpr ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑖 ∈ ( 1 ... 𝑀 ) )
182 9 ffvelrnda ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈𝑖 ) ∈ 𝑌 )
183 simpl ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝜑 )
184 183 182 jca ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝜑 ∧ ( 𝑈𝑖 ) ∈ 𝑌 ) )
185 eleq1 ( 𝑓 = ( 𝑈𝑖 ) → ( 𝑓𝑌 ↔ ( 𝑈𝑖 ) ∈ 𝑌 ) )
186 185 anbi2d ( 𝑓 = ( 𝑈𝑖 ) → ( ( 𝜑𝑓𝑌 ) ↔ ( 𝜑 ∧ ( 𝑈𝑖 ) ∈ 𝑌 ) ) )
187 feq1 ( 𝑓 = ( 𝑈𝑖 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝑈𝑖 ) : 𝑇 ⟶ ℝ ) )
188 186 187 imbi12d ( 𝑓 = ( 𝑈𝑖 ) → ( ( ( 𝜑𝑓𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝑈𝑖 ) ∈ 𝑌 ) → ( 𝑈𝑖 ) : 𝑇 ⟶ ℝ ) ) )
189 188 92 vtoclga ( ( 𝑈𝑖 ) ∈ 𝑌 → ( ( 𝜑 ∧ ( 𝑈𝑖 ) ∈ 𝑌 ) → ( 𝑈𝑖 ) : 𝑇 ⟶ ℝ ) )
190 182 184 189 sylc ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈𝑖 ) : 𝑇 ⟶ ℝ )
191 190 adantlr ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈𝑖 ) : 𝑇 ⟶ ℝ )
192 simplr ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑡𝑇 )
193 191 192 ffvelrnd ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑈𝑖 ) ‘ 𝑡 ) ∈ ℝ )
194 82 fvmpt2 ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ∈ ℝ ) → ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) = ( ( 𝑈𝑖 ) ‘ 𝑡 ) )
195 181 193 194 syl2anc ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) = ( ( 𝑈𝑖 ) ‘ 𝑡 ) )
196 195 193 eqeltrd ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) ∈ ℝ )
197 180 196 eqeltrd ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹𝑡 ) ‘ 𝑖 ) ∈ ℝ )
198 174 179 197 chvarfv ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹𝑡 ) ‘ 𝑘 ) ∈ ℝ )
199 remulcl ( ( 𝑘 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑘 · 𝑏 ) ∈ ℝ )
200 199 adantl ( ( ( 𝜑𝑡𝑇 ) ∧ ( 𝑘 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) → ( 𝑘 · 𝑏 ) ∈ ℝ )
201 167 198 200 seqcl ( ( 𝜑𝑡𝑇 ) → ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) ∈ ℝ )
202 6 fvmpt2 ( ( 𝑡𝑇 ∧ ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) ∈ ℝ ) → ( 𝑍𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) )
203 164 201 202 syl2anc ( ( 𝜑𝑡𝑇 ) → ( 𝑍𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) )
204 161 163 203 3eqtr4d ( ( 𝜑𝑡𝑇 ) → ( 𝑋𝑡 ) = ( 𝑍𝑡 ) )