Step |
Hyp |
Ref |
Expression |
1 |
|
fmuldfeq.1 |
⊢ Ⅎ 𝑖 𝜑 |
2 |
|
fmuldfeq.2 |
⊢ Ⅎ 𝑡 𝑌 |
3 |
|
fmuldfeq.3 |
⊢ 𝑃 = ( 𝑓 ∈ 𝑌 , 𝑔 ∈ 𝑌 ↦ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) |
4 |
|
fmuldfeq.4 |
⊢ 𝑋 = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) |
5 |
|
fmuldfeq.5 |
⊢ 𝐹 = ( 𝑡 ∈ 𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
6 |
|
fmuldfeq.6 |
⊢ 𝑍 = ( 𝑡 ∈ 𝑇 ↦ ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) |
7 |
|
fmuldfeq.7 |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
8 |
|
fmuldfeq.8 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
9 |
|
fmuldfeq.9 |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑀 ) ⟶ 𝑌 ) |
10 |
|
fmuldfeq.10 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
11 |
|
fmuldfeq.11 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ) |
12 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 1 ∈ ℤ ) |
13 |
8
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑀 ∈ ℤ ) |
15 |
8
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑀 ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 1 ≤ 𝑀 ) |
17 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
18 |
|
leid |
⊢ ( 𝑀 ∈ ℝ → 𝑀 ≤ 𝑀 ) |
19 |
8 17 18
|
3syl |
⊢ ( 𝜑 → 𝑀 ≤ 𝑀 ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑀 ≤ 𝑀 ) |
21 |
12 14 14 16 20
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑀 ∈ ( 1 ... 𝑀 ) ) |
22 |
8
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑀 ∈ ( 1 ... 𝑀 ) ) → 𝑀 ∈ ℕ ) |
23 |
|
eleq1 |
⊢ ( 𝑚 = 1 → ( 𝑚 ∈ ( 1 ... 𝑀 ) ↔ 1 ∈ ( 1 ... 𝑀 ) ) ) |
24 |
23
|
3anbi3d |
⊢ ( 𝑚 = 1 → ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 1 ∈ ( 1 ... 𝑀 ) ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝑚 = 1 → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ) |
26 |
25
|
fveq1d |
⊢ ( 𝑚 = 1 → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) ) |
27 |
|
fveq2 |
⊢ ( 𝑚 = 1 → ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 1 ) ) |
28 |
26 27
|
eqeq12d |
⊢ ( 𝑚 = 1 → ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑚 ) ↔ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 1 ) ) ) |
29 |
24 28
|
imbi12d |
⊢ ( 𝑚 = 1 → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑚 ) ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 1 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 1 ) ) ) ) |
30 |
|
eleq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ∈ ( 1 ... 𝑀 ) ↔ 𝑛 ∈ ( 1 ... 𝑀 ) ) ) |
31 |
30
|
3anbi3d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ) ) |
32 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ) |
33 |
32
|
fveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) ) |
34 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) |
35 |
33 34
|
eqeq12d |
⊢ ( 𝑚 = 𝑛 → ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑚 ) ↔ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ) |
36 |
31 35
|
imbi12d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑚 ) ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ) ) |
37 |
|
eleq1 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 ∈ ( 1 ... 𝑀 ) ↔ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) |
38 |
37
|
3anbi3d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) ) |
39 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) = ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) ) |
40 |
39
|
fveq1d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) ‘ 𝑡 ) ) |
41 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ ( 𝑛 + 1 ) ) ) |
42 |
40 41
|
eqeq12d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑚 ) ↔ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ ( 𝑛 + 1 ) ) ) ) |
43 |
38 42
|
imbi12d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑚 ) ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
44 |
|
eleq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ∈ ( 1 ... 𝑀 ) ↔ 𝑀 ∈ ( 1 ... 𝑀 ) ) ) |
45 |
44
|
3anbi3d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑀 ∈ ( 1 ... 𝑀 ) ) ) ) |
46 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ) |
47 |
46
|
fveq1d |
⊢ ( 𝑚 = 𝑀 → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) ) |
48 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) |
49 |
47 48
|
eqeq12d |
⊢ ( 𝑚 = 𝑀 → ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑚 ) ↔ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) ) |
50 |
45 49
|
imbi12d |
⊢ ( 𝑚 = 𝑀 → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑚 ) ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑀 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) ) ) |
51 |
|
1z |
⊢ 1 ∈ ℤ |
52 |
|
seq1 |
⊢ ( 1 ∈ ℤ → ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 1 ) = ( ( 𝐹 ‘ 𝑡 ) ‘ 1 ) ) |
53 |
51 52
|
ax-mp |
⊢ ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 1 ) = ( ( 𝐹 ‘ 𝑡 ) ‘ 1 ) |
54 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
55 |
|
1le1 |
⊢ 1 ≤ 1 |
56 |
55
|
a1i |
⊢ ( 𝜑 → 1 ≤ 1 ) |
57 |
54 13 54 56 15
|
elfzd |
⊢ ( 𝜑 → 1 ∈ ( 1 ... 𝑀 ) ) |
58 |
|
nfv |
⊢ Ⅎ 𝑖 𝑡 ∈ 𝑇 |
59 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑇 |
60 |
|
nfmpt1 |
⊢ Ⅎ 𝑖 ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
61 |
59 60
|
nfmpt |
⊢ Ⅎ 𝑖 ( 𝑡 ∈ 𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
62 |
5 61
|
nfcxfr |
⊢ Ⅎ 𝑖 𝐹 |
63 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑡 |
64 |
62 63
|
nffv |
⊢ Ⅎ 𝑖 ( 𝐹 ‘ 𝑡 ) |
65 |
|
nfcv |
⊢ Ⅎ 𝑖 1 |
66 |
64 65
|
nffv |
⊢ Ⅎ 𝑖 ( ( 𝐹 ‘ 𝑡 ) ‘ 1 ) |
67 |
|
nffvmpt1 |
⊢ Ⅎ 𝑖 ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) |
68 |
66 67
|
nfeq |
⊢ Ⅎ 𝑖 ( ( 𝐹 ‘ 𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) |
69 |
58 68
|
nfim |
⊢ Ⅎ 𝑖 ( 𝑡 ∈ 𝑇 → ( ( 𝐹 ‘ 𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) ) |
70 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) = ( ( 𝐹 ‘ 𝑡 ) ‘ 1 ) ) |
71 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) ) |
72 |
70 71
|
eqeq12d |
⊢ ( 𝑖 = 1 → ( ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) ↔ ( ( 𝐹 ‘ 𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) ) ) |
73 |
72
|
imbi2d |
⊢ ( 𝑖 = 1 → ( ( 𝑡 ∈ 𝑇 → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) ) ↔ ( 𝑡 ∈ 𝑇 → ( ( 𝐹 ‘ 𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) ) ) ) |
74 |
|
ovex |
⊢ ( 1 ... 𝑀 ) ∈ V |
75 |
74
|
mptex |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ V |
76 |
5
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ V ) → ( 𝐹 ‘ 𝑡 ) = ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
77 |
75 76
|
mpan2 |
⊢ ( 𝑡 ∈ 𝑇 → ( 𝐹 ‘ 𝑡 ) = ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
78 |
77
|
fveq1d |
⊢ ( 𝑡 ∈ 𝑇 → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) ) |
79 |
69 73 78
|
vtoclg1f |
⊢ ( 1 ∈ ( 1 ... 𝑀 ) → ( 𝑡 ∈ 𝑇 → ( ( 𝐹 ‘ 𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) ) ) |
80 |
57 79
|
syl |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 → ( ( 𝐹 ‘ 𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) ) ) |
81 |
80
|
imp |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) ) |
82 |
|
eqid |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
83 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( 𝑈 ‘ 𝑖 ) = ( 𝑈 ‘ 1 ) ) |
84 |
83
|
fveq1d |
⊢ ( 𝑖 = 1 → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝑈 ‘ 1 ) ‘ 𝑡 ) ) |
85 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 1 ∈ ( 1 ... 𝑀 ) ) |
86 |
9 57
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑈 ‘ 1 ) ∈ 𝑌 ) |
87 |
86
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ ( 𝑈 ‘ 1 ) ∈ 𝑌 ) ) |
88 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝑈 ‘ 1 ) → ( 𝑓 ∈ 𝑌 ↔ ( 𝑈 ‘ 1 ) ∈ 𝑌 ) ) |
89 |
88
|
anbi2d |
⊢ ( 𝑓 = ( 𝑈 ‘ 1 ) → ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ) ↔ ( 𝜑 ∧ ( 𝑈 ‘ 1 ) ∈ 𝑌 ) ) ) |
90 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑈 ‘ 1 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝑈 ‘ 1 ) : 𝑇 ⟶ ℝ ) ) |
91 |
89 90
|
imbi12d |
⊢ ( 𝑓 = ( 𝑈 ‘ 1 ) → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝑈 ‘ 1 ) ∈ 𝑌 ) → ( 𝑈 ‘ 1 ) : 𝑇 ⟶ ℝ ) ) ) |
92 |
10
|
a1i |
⊢ ( 𝑓 ∈ 𝑌 → ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ ) ) |
93 |
91 92
|
vtoclga |
⊢ ( ( 𝑈 ‘ 1 ) ∈ 𝑌 → ( ( 𝜑 ∧ ( 𝑈 ‘ 1 ) ∈ 𝑌 ) → ( 𝑈 ‘ 1 ) : 𝑇 ⟶ ℝ ) ) |
94 |
86 87 93
|
sylc |
⊢ ( 𝜑 → ( 𝑈 ‘ 1 ) : 𝑇 ⟶ ℝ ) |
95 |
94
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑈 ‘ 1 ) ‘ 𝑡 ) ∈ ℝ ) |
96 |
82 84 85 95
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) = ( ( 𝑈 ‘ 1 ) ‘ 𝑡 ) ) |
97 |
81 96
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 1 ) = ( ( 𝑈 ‘ 1 ) ‘ 𝑡 ) ) |
98 |
|
seq1 |
⊢ ( 1 ∈ ℤ → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) = ( 𝑈 ‘ 1 ) ) |
99 |
51 98
|
ax-mp |
⊢ ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) = ( 𝑈 ‘ 1 ) |
100 |
99
|
fveq1i |
⊢ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) = ( ( 𝑈 ‘ 1 ) ‘ 𝑡 ) |
101 |
97 100
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 1 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) ) |
102 |
53 101
|
eqtr2id |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 1 ) ) |
103 |
102
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 1 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 1 ) ) |
104 |
|
simp31 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → 𝜑 ) |
105 |
|
simp1 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → 𝑛 ∈ ℕ ) |
106 |
|
simp33 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
107 |
105 106
|
jca |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑛 ∈ ℕ ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) |
108 |
|
elnnuz |
⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
109 |
108
|
biimpi |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
110 |
109
|
anim1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) → ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) |
111 |
|
peano2fzr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) → 𝑛 ∈ ( 1 ... 𝑀 ) ) |
112 |
107 110 111
|
3syl |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → 𝑛 ∈ ( 1 ... 𝑀 ) ) |
113 |
|
simp32 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → 𝑡 ∈ 𝑇 ) |
114 |
|
simp2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ) |
115 |
104 113 112 114
|
mp3and |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) |
116 |
112 106 115
|
3jca |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ) |
117 |
|
nfv |
⊢ Ⅎ 𝑓 𝜑 |
118 |
|
nfv |
⊢ Ⅎ 𝑓 𝑛 ∈ ( 1 ... 𝑀 ) |
119 |
|
nfv |
⊢ Ⅎ 𝑓 ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) |
120 |
|
nfcv |
⊢ Ⅎ 𝑓 1 |
121 |
|
nfmpo1 |
⊢ Ⅎ 𝑓 ( 𝑓 ∈ 𝑌 , 𝑔 ∈ 𝑌 ↦ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) |
122 |
3 121
|
nfcxfr |
⊢ Ⅎ 𝑓 𝑃 |
123 |
|
nfcv |
⊢ Ⅎ 𝑓 𝑈 |
124 |
120 122 123
|
nfseq |
⊢ Ⅎ 𝑓 seq 1 ( 𝑃 , 𝑈 ) |
125 |
|
nfcv |
⊢ Ⅎ 𝑓 𝑛 |
126 |
124 125
|
nffv |
⊢ Ⅎ 𝑓 ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) |
127 |
|
nfcv |
⊢ Ⅎ 𝑓 𝑡 |
128 |
126 127
|
nffv |
⊢ Ⅎ 𝑓 ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) |
129 |
|
nfcv |
⊢ Ⅎ 𝑓 ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) |
130 |
128 129
|
nfeq |
⊢ Ⅎ 𝑓 ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) |
131 |
118 119 130
|
nf3an |
⊢ Ⅎ 𝑓 ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) |
132 |
117 131
|
nfan |
⊢ Ⅎ 𝑓 ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ) |
133 |
|
nfv |
⊢ Ⅎ 𝑔 𝜑 |
134 |
|
nfv |
⊢ Ⅎ 𝑔 𝑛 ∈ ( 1 ... 𝑀 ) |
135 |
|
nfv |
⊢ Ⅎ 𝑔 ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) |
136 |
|
nfcv |
⊢ Ⅎ 𝑔 1 |
137 |
|
nfmpo2 |
⊢ Ⅎ 𝑔 ( 𝑓 ∈ 𝑌 , 𝑔 ∈ 𝑌 ↦ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) |
138 |
3 137
|
nfcxfr |
⊢ Ⅎ 𝑔 𝑃 |
139 |
|
nfcv |
⊢ Ⅎ 𝑔 𝑈 |
140 |
136 138 139
|
nfseq |
⊢ Ⅎ 𝑔 seq 1 ( 𝑃 , 𝑈 ) |
141 |
|
nfcv |
⊢ Ⅎ 𝑔 𝑛 |
142 |
140 141
|
nffv |
⊢ Ⅎ 𝑔 ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) |
143 |
|
nfcv |
⊢ Ⅎ 𝑔 𝑡 |
144 |
142 143
|
nffv |
⊢ Ⅎ 𝑔 ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) |
145 |
|
nfcv |
⊢ Ⅎ 𝑔 ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) |
146 |
144 145
|
nfeq |
⊢ Ⅎ 𝑔 ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) |
147 |
134 135 146
|
nf3an |
⊢ Ⅎ 𝑔 ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) |
148 |
133 147
|
nfan |
⊢ Ⅎ 𝑔 ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ) |
149 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ) → 𝑇 ∈ V ) |
150 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ) → 𝑈 : ( 1 ... 𝑀 ) ⟶ 𝑌 ) |
151 |
11
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ) ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ) |
152 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ) → 𝑛 ∈ ( 1 ... 𝑀 ) ) |
153 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ) → ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
154 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) |
155 |
10
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ) ∧ 𝑓 ∈ 𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
156 |
132 148 2 3 5 149 150 151 152 153 154 155
|
fmuldfeqlem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ ( 𝑛 + 1 ) ) ) |
157 |
104 116 113 156
|
syl21anc |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ ( 𝑛 + 1 ) ) ) |
158 |
157
|
3exp |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑛 ) ) → ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
159 |
29 36 43 50 103 158
|
nnind |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑀 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) ) |
160 |
22 159
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑀 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) |
161 |
21 160
|
mpd3an3 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) |
162 |
4
|
fveq1i |
⊢ ( 𝑋 ‘ 𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) |
163 |
162
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑋 ‘ 𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) ) |
164 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
165 |
|
elnnuz |
⊢ ( 𝑀 ∈ ℕ ↔ 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
166 |
8 165
|
sylib |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
168 |
1 58
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) |
169 |
|
nfv |
⊢ Ⅎ 𝑖 𝑘 ∈ ( 1 ... 𝑀 ) |
170 |
168 169
|
nfan |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) |
171 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑘 |
172 |
64 171
|
nffv |
⊢ Ⅎ 𝑖 ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑘 ) |
173 |
172
|
nfel1 |
⊢ Ⅎ 𝑖 ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑘 ) ∈ ℝ |
174 |
170 173
|
nfim |
⊢ Ⅎ 𝑖 ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑘 ) ∈ ℝ ) |
175 |
|
eleq1 |
⊢ ( 𝑖 = 𝑘 → ( 𝑖 ∈ ( 1 ... 𝑀 ) ↔ 𝑘 ∈ ( 1 ... 𝑀 ) ) ) |
176 |
175
|
anbi2d |
⊢ ( 𝑖 = 𝑘 → ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ↔ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) ) ) |
177 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) = ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑘 ) ) |
178 |
177
|
eleq1d |
⊢ ( 𝑖 = 𝑘 → ( ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) ∈ ℝ ↔ ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑘 ) ∈ ℝ ) ) |
179 |
176 178
|
imbi12d |
⊢ ( 𝑖 = 𝑘 → ( ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) ∈ ℝ ) ↔ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑘 ) ∈ ℝ ) ) ) |
180 |
78
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) ) |
181 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑖 ∈ ( 1 ... 𝑀 ) ) |
182 |
9
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈 ‘ 𝑖 ) ∈ 𝑌 ) |
183 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝜑 ) |
184 |
183 182
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝜑 ∧ ( 𝑈 ‘ 𝑖 ) ∈ 𝑌 ) ) |
185 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝑈 ‘ 𝑖 ) → ( 𝑓 ∈ 𝑌 ↔ ( 𝑈 ‘ 𝑖 ) ∈ 𝑌 ) ) |
186 |
185
|
anbi2d |
⊢ ( 𝑓 = ( 𝑈 ‘ 𝑖 ) → ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ) ↔ ( 𝜑 ∧ ( 𝑈 ‘ 𝑖 ) ∈ 𝑌 ) ) ) |
187 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑈 ‘ 𝑖 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
188 |
186 187
|
imbi12d |
⊢ ( 𝑓 = ( 𝑈 ‘ 𝑖 ) → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑖 ) ∈ 𝑌 ) → ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) ) |
189 |
188 92
|
vtoclga |
⊢ ( ( 𝑈 ‘ 𝑖 ) ∈ 𝑌 → ( ( 𝜑 ∧ ( 𝑈 ‘ 𝑖 ) ∈ 𝑌 ) → ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
190 |
182 184 189
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) |
191 |
190
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) |
192 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑡 ∈ 𝑇 ) |
193 |
191 192
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
194 |
82
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) → ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
195 |
181 193 194
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) |
196 |
195 193
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) ∈ ℝ ) |
197 |
180 196
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) ∈ ℝ ) |
198 |
174 179 197
|
chvarfv |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑘 ) ∈ ℝ ) |
199 |
|
remulcl |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑘 · 𝑏 ) ∈ ℝ ) |
200 |
199
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑘 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) → ( 𝑘 · 𝑏 ) ∈ ℝ ) |
201 |
167 198 200
|
seqcl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ∈ ℝ ) |
202 |
6
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ∈ ℝ ) → ( 𝑍 ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) |
203 |
164 201 202
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑍 ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) |
204 |
161 163 203
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑋 ‘ 𝑡 ) = ( 𝑍 ‘ 𝑡 ) ) |