| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmuldfeqlem1.1 |
⊢ Ⅎ 𝑓 𝜑 |
| 2 |
|
fmuldfeqlem1.2 |
⊢ Ⅎ 𝑔 𝜑 |
| 3 |
|
fmuldfeqlem1.3 |
⊢ Ⅎ 𝑡 𝑌 |
| 4 |
|
fmuldfeqlem1.5 |
⊢ 𝑃 = ( 𝑓 ∈ 𝑌 , 𝑔 ∈ 𝑌 ↦ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 5 |
|
fmuldfeqlem1.6 |
⊢ 𝐹 = ( 𝑡 ∈ 𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 6 |
|
fmuldfeqlem1.7 |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
| 7 |
|
fmuldfeqlem1.8 |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑀 ) ⟶ 𝑌 ) |
| 8 |
|
fmuldfeqlem1.9 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ) |
| 9 |
|
fmuldfeqlem1.10 |
⊢ ( 𝜑 → 𝑁 ∈ ( 1 ... 𝑀 ) ) |
| 10 |
|
fmuldfeqlem1.11 |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
| 11 |
|
fmuldfeqlem1.12 |
⊢ ( 𝜑 → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑁 ) ) |
| 12 |
|
fmuldfeqlem1.13 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
| 13 |
|
ovex |
⊢ ( 1 ... 𝑀 ) ∈ V |
| 14 |
13
|
mptex |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ V |
| 15 |
5
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ V ) → ( 𝐹 ‘ 𝑡 ) = ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 16 |
14 15
|
mpan2 |
⊢ ( 𝑡 ∈ 𝑇 → ( 𝐹 ‘ 𝑡 ) = ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 17 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑈 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑗 ) ) |
| 18 |
17
|
fveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) ) |
| 19 |
18
|
cbvmptv |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑗 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) ) |
| 20 |
16 19
|
eqtrdi |
⊢ ( 𝑡 ∈ 𝑇 → ( 𝐹 ‘ 𝑡 ) = ( 𝑗 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) ) ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) = ( 𝑗 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑁 + 1 ) → ( 𝑈 ‘ 𝑗 ) = ( 𝑈 ‘ ( 𝑁 + 1 ) ) ) |
| 23 |
22
|
fveq1d |
⊢ ( 𝑗 = ( 𝑁 + 1 ) → ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) = ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) |
| 24 |
23
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑗 = ( 𝑁 + 1 ) ) → ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) = ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) |
| 25 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑁 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
| 26 |
7 10
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑈 ‘ ( 𝑁 + 1 ) ) ∈ 𝑌 ) |
| 27 |
26
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ ( 𝑈 ‘ ( 𝑁 + 1 ) ) ∈ 𝑌 ) ) |
| 28 |
|
nfcv |
⊢ Ⅎ 𝑓 ( 𝑈 ‘ ( 𝑁 + 1 ) ) |
| 29 |
|
nfv |
⊢ Ⅎ 𝑓 ( 𝑈 ‘ ( 𝑁 + 1 ) ) ∈ 𝑌 |
| 30 |
1 29
|
nfan |
⊢ Ⅎ 𝑓 ( 𝜑 ∧ ( 𝑈 ‘ ( 𝑁 + 1 ) ) ∈ 𝑌 ) |
| 31 |
|
nfv |
⊢ Ⅎ 𝑓 ( 𝑈 ‘ ( 𝑁 + 1 ) ) : 𝑇 ⟶ ℝ |
| 32 |
30 31
|
nfim |
⊢ Ⅎ 𝑓 ( ( 𝜑 ∧ ( 𝑈 ‘ ( 𝑁 + 1 ) ) ∈ 𝑌 ) → ( 𝑈 ‘ ( 𝑁 + 1 ) ) : 𝑇 ⟶ ℝ ) |
| 33 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝑈 ‘ ( 𝑁 + 1 ) ) → ( 𝑓 ∈ 𝑌 ↔ ( 𝑈 ‘ ( 𝑁 + 1 ) ) ∈ 𝑌 ) ) |
| 34 |
33
|
anbi2d |
⊢ ( 𝑓 = ( 𝑈 ‘ ( 𝑁 + 1 ) ) → ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ) ↔ ( 𝜑 ∧ ( 𝑈 ‘ ( 𝑁 + 1 ) ) ∈ 𝑌 ) ) ) |
| 35 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑈 ‘ ( 𝑁 + 1 ) ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝑈 ‘ ( 𝑁 + 1 ) ) : 𝑇 ⟶ ℝ ) ) |
| 36 |
34 35
|
imbi12d |
⊢ ( 𝑓 = ( 𝑈 ‘ ( 𝑁 + 1 ) ) → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝑈 ‘ ( 𝑁 + 1 ) ) ∈ 𝑌 ) → ( 𝑈 ‘ ( 𝑁 + 1 ) ) : 𝑇 ⟶ ℝ ) ) ) |
| 37 |
28 32 36 12
|
vtoclgf |
⊢ ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ∈ 𝑌 → ( ( 𝜑 ∧ ( 𝑈 ‘ ( 𝑁 + 1 ) ) ∈ 𝑌 ) → ( 𝑈 ‘ ( 𝑁 + 1 ) ) : 𝑇 ⟶ ℝ ) ) |
| 38 |
26 27 37
|
sylc |
⊢ ( 𝜑 → ( 𝑈 ‘ ( 𝑁 + 1 ) ) : 𝑇 ⟶ ℝ ) |
| 39 |
38
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ∈ ℝ ) |
| 40 |
21 24 25 39
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑡 ) ‘ ( 𝑁 + 1 ) ) = ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) |
| 41 |
40
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑁 ) · ( ( 𝐹 ‘ 𝑡 ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑁 ) · ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) ) |
| 42 |
|
elfzuz |
⊢ ( 𝑁 ∈ ( 1 ... 𝑀 ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 43 |
9 42
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 44 |
|
seqp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑁 ) · ( ( 𝐹 ‘ 𝑡 ) ‘ ( 𝑁 + 1 ) ) ) ) |
| 45 |
43 44
|
syl |
⊢ ( 𝜑 → ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑁 ) · ( ( 𝐹 ‘ 𝑡 ) ‘ ( 𝑁 + 1 ) ) ) ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑁 ) · ( ( 𝐹 ‘ 𝑡 ) ‘ ( 𝑁 + 1 ) ) ) ) |
| 47 |
|
seqp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) 𝑃 ( 𝑈 ‘ ( 𝑁 + 1 ) ) ) ) |
| 48 |
43 47
|
syl |
⊢ ( 𝜑 → ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) 𝑃 ( 𝑈 ‘ ( 𝑁 + 1 ) ) ) ) |
| 49 |
|
nfcv |
⊢ Ⅎ ℎ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) |
| 50 |
|
nfcv |
⊢ Ⅎ 𝑙 ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) |
| 51 |
|
nfcv |
⊢ Ⅎ 𝑓 ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) |
| 52 |
|
nfcv |
⊢ Ⅎ 𝑔 ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) |
| 53 |
|
fveq1 |
⊢ ( 𝑓 = ℎ → ( 𝑓 ‘ 𝑡 ) = ( ℎ ‘ 𝑡 ) ) |
| 54 |
|
fveq1 |
⊢ ( 𝑔 = 𝑙 → ( 𝑔 ‘ 𝑡 ) = ( 𝑙 ‘ 𝑡 ) ) |
| 55 |
53 54
|
oveqan12d |
⊢ ( ( 𝑓 = ℎ ∧ 𝑔 = 𝑙 ) → ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) = ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) |
| 56 |
55
|
mpteq2dv |
⊢ ( ( 𝑓 = ℎ ∧ 𝑔 = 𝑙 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ) |
| 57 |
49 50 51 52 56
|
cbvmpo |
⊢ ( 𝑓 ∈ 𝑌 , 𝑔 ∈ 𝑌 ↦ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) = ( ℎ ∈ 𝑌 , 𝑙 ∈ 𝑌 ↦ ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ) |
| 58 |
4 57
|
eqtri |
⊢ 𝑃 = ( ℎ ∈ 𝑌 , 𝑙 ∈ 𝑌 ↦ ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ) |
| 59 |
58
|
a1i |
⊢ ( 𝜑 → 𝑃 = ( ℎ ∈ 𝑌 , 𝑙 ∈ 𝑌 ↦ ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ) ) |
| 60 |
|
nfcv |
⊢ Ⅎ 𝑡 1 |
| 61 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) |
| 62 |
3 3 61
|
nfmpo |
⊢ Ⅎ 𝑡 ( 𝑓 ∈ 𝑌 , 𝑔 ∈ 𝑌 ↦ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 63 |
4 62
|
nfcxfr |
⊢ Ⅎ 𝑡 𝑃 |
| 64 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑈 |
| 65 |
60 63 64
|
nfseq |
⊢ Ⅎ 𝑡 seq 1 ( 𝑃 , 𝑈 ) |
| 66 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑁 |
| 67 |
65 66
|
nffv |
⊢ Ⅎ 𝑡 ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) |
| 68 |
67
|
nfeq2 |
⊢ Ⅎ 𝑡 ℎ = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) |
| 69 |
|
nfv |
⊢ Ⅎ 𝑡 𝑙 = ( 𝑈 ‘ ( 𝑁 + 1 ) ) |
| 70 |
68 69
|
nfan |
⊢ Ⅎ 𝑡 ( ℎ = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ∧ 𝑙 = ( 𝑈 ‘ ( 𝑁 + 1 ) ) ) |
| 71 |
|
fveq1 |
⊢ ( ℎ = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) → ( ℎ ‘ 𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ‘ 𝑡 ) ) |
| 72 |
71
|
ad2antrr |
⊢ ( ( ( ℎ = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ∧ 𝑙 = ( 𝑈 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ℎ ‘ 𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ‘ 𝑡 ) ) |
| 73 |
|
fveq1 |
⊢ ( 𝑙 = ( 𝑈 ‘ ( 𝑁 + 1 ) ) → ( 𝑙 ‘ 𝑡 ) = ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) |
| 74 |
73
|
ad2antlr |
⊢ ( ( ( ℎ = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ∧ 𝑙 = ( 𝑈 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑙 ‘ 𝑡 ) = ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) |
| 75 |
72 74
|
oveq12d |
⊢ ( ( ( ℎ = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ∧ 𝑙 = ( 𝑈 ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) = ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ‘ 𝑡 ) · ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) ) |
| 76 |
70 75
|
mpteq2da |
⊢ ( ( ℎ = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ∧ 𝑙 = ( 𝑈 ‘ ( 𝑁 + 1 ) ) ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ‘ 𝑡 ) · ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) ) ) |
| 77 |
76
|
adantl |
⊢ ( ( 𝜑 ∧ ( ℎ = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ∧ 𝑙 = ( 𝑈 ‘ ( 𝑁 + 1 ) ) ) ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ‘ 𝑡 ) · ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) ) ) |
| 78 |
|
eqid |
⊢ ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) |
| 79 |
|
3simpc |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) → ( ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) ) |
| 80 |
|
nfcv |
⊢ Ⅎ 𝑓 ℎ |
| 81 |
|
nfcv |
⊢ Ⅎ 𝑔 ℎ |
| 82 |
|
nfcv |
⊢ Ⅎ 𝑔 𝑙 |
| 83 |
|
nfv |
⊢ Ⅎ 𝑓 ℎ ∈ 𝑌 |
| 84 |
|
nfv |
⊢ Ⅎ 𝑓 𝑔 ∈ 𝑌 |
| 85 |
1 83 84
|
nf3an |
⊢ Ⅎ 𝑓 ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) |
| 86 |
|
nfv |
⊢ Ⅎ 𝑓 ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 |
| 87 |
85 86
|
nfim |
⊢ Ⅎ 𝑓 ( ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ) |
| 88 |
|
nfv |
⊢ Ⅎ 𝑔 ℎ ∈ 𝑌 |
| 89 |
|
nfv |
⊢ Ⅎ 𝑔 𝑙 ∈ 𝑌 |
| 90 |
2 88 89
|
nf3an |
⊢ Ⅎ 𝑔 ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) |
| 91 |
|
nfv |
⊢ Ⅎ 𝑔 ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ∈ 𝑌 |
| 92 |
90 91
|
nfim |
⊢ Ⅎ 𝑔 ( ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ∈ 𝑌 ) |
| 93 |
|
eleq1 |
⊢ ( 𝑓 = ℎ → ( 𝑓 ∈ 𝑌 ↔ ℎ ∈ 𝑌 ) ) |
| 94 |
93
|
3anbi2d |
⊢ ( 𝑓 = ℎ → ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ↔ ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ) ) |
| 95 |
53
|
oveq1d |
⊢ ( 𝑓 = ℎ → ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) = ( ( ℎ ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) |
| 96 |
95
|
mpteq2dv |
⊢ ( 𝑓 = ℎ → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 97 |
96
|
eleq1d |
⊢ ( 𝑓 = ℎ → ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ) ) |
| 98 |
94 97
|
imbi12d |
⊢ ( 𝑓 = ℎ → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ) ↔ ( ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ) ) ) |
| 99 |
|
eleq1 |
⊢ ( 𝑔 = 𝑙 → ( 𝑔 ∈ 𝑌 ↔ 𝑙 ∈ 𝑌 ) ) |
| 100 |
99
|
3anbi3d |
⊢ ( 𝑔 = 𝑙 → ( ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ↔ ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) ) ) |
| 101 |
54
|
oveq2d |
⊢ ( 𝑔 = 𝑙 → ( ( ℎ ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) = ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) |
| 102 |
101
|
mpteq2dv |
⊢ ( 𝑔 = 𝑙 → ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ) |
| 103 |
102
|
eleq1d |
⊢ ( 𝑔 = 𝑙 → ( ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ∈ 𝑌 ) ) |
| 104 |
100 103
|
imbi12d |
⊢ ( 𝑔 = 𝑙 → ( ( ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝑌 ) ↔ ( ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ∈ 𝑌 ) ) ) |
| 105 |
80 81 82 87 92 98 104 8
|
vtocl2gf |
⊢ ( ( ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) → ( ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ∈ 𝑌 ) ) |
| 106 |
79 105
|
mpcom |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ℎ ‘ 𝑡 ) · ( 𝑙 ‘ 𝑡 ) ) ) ∈ 𝑌 ) |
| 107 |
58 78 9 7 106 6
|
fmulcl |
⊢ ( 𝜑 → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ∈ 𝑌 ) |
| 108 |
|
mptexg |
⊢ ( 𝑇 ∈ V → ( 𝑡 ∈ 𝑇 ↦ ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ‘ 𝑡 ) · ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) ) ∈ V ) |
| 109 |
6 108
|
syl |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ‘ 𝑡 ) · ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) ) ∈ V ) |
| 110 |
59 77 107 26 109
|
ovmpod |
⊢ ( 𝜑 → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) 𝑃 ( 𝑈 ‘ ( 𝑁 + 1 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ‘ 𝑡 ) · ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) ) ) |
| 111 |
48 110
|
eqtrd |
⊢ ( 𝜑 → ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑁 + 1 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ‘ 𝑡 ) · ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) ) ) |
| 112 |
107
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ∈ 𝑌 ) ) |
| 113 |
|
nfcv |
⊢ Ⅎ 𝑓 1 |
| 114 |
|
nfmpo1 |
⊢ Ⅎ 𝑓 ( 𝑓 ∈ 𝑌 , 𝑔 ∈ 𝑌 ↦ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 115 |
4 114
|
nfcxfr |
⊢ Ⅎ 𝑓 𝑃 |
| 116 |
|
nfcv |
⊢ Ⅎ 𝑓 𝑈 |
| 117 |
113 115 116
|
nfseq |
⊢ Ⅎ 𝑓 seq 1 ( 𝑃 , 𝑈 ) |
| 118 |
|
nfcv |
⊢ Ⅎ 𝑓 𝑁 |
| 119 |
117 118
|
nffv |
⊢ Ⅎ 𝑓 ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) |
| 120 |
119
|
nfel1 |
⊢ Ⅎ 𝑓 ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ∈ 𝑌 |
| 121 |
1 120
|
nfan |
⊢ Ⅎ 𝑓 ( 𝜑 ∧ ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ∈ 𝑌 ) |
| 122 |
|
nfcv |
⊢ Ⅎ 𝑓 𝑇 |
| 123 |
|
nfcv |
⊢ Ⅎ 𝑓 ℝ |
| 124 |
119 122 123
|
nff |
⊢ Ⅎ 𝑓 ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) : 𝑇 ⟶ ℝ |
| 125 |
121 124
|
nfim |
⊢ Ⅎ 𝑓 ( ( 𝜑 ∧ ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ∈ 𝑌 ) → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) : 𝑇 ⟶ ℝ ) |
| 126 |
|
eleq1 |
⊢ ( 𝑓 = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) → ( 𝑓 ∈ 𝑌 ↔ ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ∈ 𝑌 ) ) |
| 127 |
126
|
anbi2d |
⊢ ( 𝑓 = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) → ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ) ↔ ( 𝜑 ∧ ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ∈ 𝑌 ) ) ) |
| 128 |
|
feq1 |
⊢ ( 𝑓 = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) : 𝑇 ⟶ ℝ ) ) |
| 129 |
127 128
|
imbi12d |
⊢ ( 𝑓 = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ∈ 𝑌 ) → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) : 𝑇 ⟶ ℝ ) ) ) |
| 130 |
119 125 129 12
|
vtoclgf |
⊢ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ∈ 𝑌 → ( ( 𝜑 ∧ ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ∈ 𝑌 ) → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) : 𝑇 ⟶ ℝ ) ) |
| 131 |
107 112 130
|
sylc |
⊢ ( 𝜑 → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) : 𝑇 ⟶ ℝ ) |
| 132 |
131
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ‘ 𝑡 ) ∈ ℝ ) |
| 133 |
132 39
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ‘ 𝑡 ) · ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) ∈ ℝ ) |
| 134 |
111 133
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) = ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ‘ 𝑡 ) · ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) ) |
| 135 |
11
|
oveq1d |
⊢ ( 𝜑 → ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ‘ 𝑡 ) · ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) = ( ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑁 ) · ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) ) |
| 136 |
135
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑁 ) ‘ 𝑡 ) · ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) = ( ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑁 ) · ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) ) |
| 137 |
134 136
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) = ( ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑁 ) · ( ( 𝑈 ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) ) ) |
| 138 |
41 46 137
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑁 + 1 ) ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹 ‘ 𝑡 ) ) ‘ ( 𝑁 + 1 ) ) ) |