Step |
Hyp |
Ref |
Expression |
1 |
|
df-fm |
⊢ FilMap = ( 𝑥 ∈ V , 𝑓 ∈ V ↦ ( 𝑏 ∈ ( fBas ‘ dom 𝑓 ) ↦ ( 𝑥 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝑓 “ 𝑦 ) ) ) ) ) |
2 |
1
|
a1i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → FilMap = ( 𝑥 ∈ V , 𝑓 ∈ V ↦ ( 𝑏 ∈ ( fBas ‘ dom 𝑓 ) ↦ ( 𝑥 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝑓 “ 𝑦 ) ) ) ) ) ) |
3 |
|
dmeq |
⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) |
4 |
3
|
fveq2d |
⊢ ( 𝑓 = 𝐹 → ( fBas ‘ dom 𝑓 ) = ( fBas ‘ dom 𝐹 ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑓 = 𝐹 ) → ( fBas ‘ dom 𝑓 ) = ( fBas ‘ dom 𝐹 ) ) |
6 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
7 |
|
imaeq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 “ 𝑦 ) = ( 𝐹 “ 𝑦 ) ) |
8 |
7
|
mpteq2dv |
⊢ ( 𝑓 = 𝐹 → ( 𝑦 ∈ 𝑏 ↦ ( 𝑓 “ 𝑦 ) ) = ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) |
9 |
8
|
rneqd |
⊢ ( 𝑓 = 𝐹 → ran ( 𝑦 ∈ 𝑏 ↦ ( 𝑓 “ 𝑦 ) ) = ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) |
10 |
6 9
|
oveqan12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑓 = 𝐹 ) → ( 𝑥 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝑓 “ 𝑦 ) ) ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
11 |
5 10
|
mpteq12dv |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑓 = 𝐹 ) → ( 𝑏 ∈ ( fBas ‘ dom 𝑓 ) ↦ ( 𝑥 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝑓 “ 𝑦 ) ) ) ) = ( 𝑏 ∈ ( fBas ‘ dom 𝐹 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) ) |
12 |
|
fdm |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → dom 𝐹 = 𝑌 ) |
13 |
12
|
fveq2d |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( fBas ‘ dom 𝐹 ) = ( fBas ‘ 𝑌 ) ) |
14 |
13
|
mpteq1d |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝑏 ∈ ( fBas ‘ dom 𝐹 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) = ( 𝑏 ∈ ( fBas ‘ 𝑌 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) ) |
15 |
14
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑏 ∈ ( fBas ‘ dom 𝐹 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) = ( 𝑏 ∈ ( fBas ‘ 𝑌 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) ) |
16 |
11 15
|
sylan9eqr |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑥 = 𝑋 ∧ 𝑓 = 𝐹 ) ) → ( 𝑏 ∈ ( fBas ‘ dom 𝑓 ) ↦ ( 𝑥 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝑓 “ 𝑦 ) ) ) ) = ( 𝑏 ∈ ( fBas ‘ 𝑌 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) ) |
17 |
|
elex |
⊢ ( 𝑋 ∈ 𝐴 → 𝑋 ∈ V ) |
18 |
17
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝑋 ∈ V ) |
19 |
|
simp3 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐹 : 𝑌 ⟶ 𝑋 ) |
20 |
|
elfvdm |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → 𝑌 ∈ dom fBas ) |
21 |
20
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝑌 ∈ dom fBas ) |
22 |
19 21
|
fexd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐹 ∈ V ) |
23 |
|
fvex |
⊢ ( fBas ‘ 𝑌 ) ∈ V |
24 |
23
|
mptex |
⊢ ( 𝑏 ∈ ( fBas ‘ 𝑌 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) ∈ V |
25 |
24
|
a1i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑏 ∈ ( fBas ‘ 𝑌 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) ∈ V ) |
26 |
2 16 18 22 25
|
ovmpod |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑋 FilMap 𝐹 ) = ( 𝑏 ∈ ( fBas ‘ 𝑌 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) ) |
27 |
26
|
fveq1d |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) = ( ( 𝑏 ∈ ( fBas ‘ 𝑌 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) ‘ 𝐵 ) ) |
28 |
|
mpteq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) |
29 |
28
|
rneqd |
⊢ ( 𝑏 = 𝐵 → ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) = ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) |
30 |
29
|
oveq2d |
⊢ ( 𝑏 = 𝐵 → ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
31 |
|
eqid |
⊢ ( 𝑏 ∈ ( fBas ‘ 𝑌 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) = ( 𝑏 ∈ ( fBas ‘ 𝑌 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
32 |
|
ovex |
⊢ ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ∈ V |
33 |
30 31 32
|
fvmpt |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑌 ) → ( ( 𝑏 ∈ ( fBas ‘ 𝑌 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) ‘ 𝐵 ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
34 |
33
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑏 ∈ ( fBas ‘ 𝑌 ) ↦ ( 𝑋 filGen ran ( 𝑦 ∈ 𝑏 ↦ ( 𝐹 “ 𝑦 ) ) ) ) ‘ 𝐵 ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |
35 |
27 34
|
eqtrd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ) |