| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-fm | ⊢  FilMap   =  ( 𝑥  ∈  V ,  𝑓  ∈  V  ↦  ( 𝑏  ∈  ( fBas ‘ dom  𝑓 )  ↦  ( 𝑥 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝑓  “  𝑦 ) ) ) ) ) | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →   FilMap   =  ( 𝑥  ∈  V ,  𝑓  ∈  V  ↦  ( 𝑏  ∈  ( fBas ‘ dom  𝑓 )  ↦  ( 𝑥 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝑓  “  𝑦 ) ) ) ) ) ) | 
						
							| 3 |  | dmeq | ⊢ ( 𝑓  =  𝐹  →  dom  𝑓  =  dom  𝐹 ) | 
						
							| 4 | 3 | fveq2d | ⊢ ( 𝑓  =  𝐹  →  ( fBas ‘ dom  𝑓 )  =  ( fBas ‘ dom  𝐹 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑓  =  𝐹 )  →  ( fBas ‘ dom  𝑓 )  =  ( fBas ‘ dom  𝐹 ) ) | 
						
							| 6 |  | id | ⊢ ( 𝑥  =  𝑋  →  𝑥  =  𝑋 ) | 
						
							| 7 |  | imaeq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓  “  𝑦 )  =  ( 𝐹  “  𝑦 ) ) | 
						
							| 8 | 7 | mpteq2dv | ⊢ ( 𝑓  =  𝐹  →  ( 𝑦  ∈  𝑏  ↦  ( 𝑓  “  𝑦 ) )  =  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) ) ) | 
						
							| 9 | 8 | rneqd | ⊢ ( 𝑓  =  𝐹  →  ran  ( 𝑦  ∈  𝑏  ↦  ( 𝑓  “  𝑦 ) )  =  ran  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) ) ) | 
						
							| 10 | 6 9 | oveqan12d | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑓  =  𝐹 )  →  ( 𝑥 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝑓  “  𝑦 ) ) )  =  ( 𝑋 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) ) ) ) | 
						
							| 11 | 5 10 | mpteq12dv | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑓  =  𝐹 )  →  ( 𝑏  ∈  ( fBas ‘ dom  𝑓 )  ↦  ( 𝑥 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝑓  “  𝑦 ) ) ) )  =  ( 𝑏  ∈  ( fBas ‘ dom  𝐹 )  ↦  ( 𝑋 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) ) ) ) ) | 
						
							| 12 |  | fdm | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  dom  𝐹  =  𝑌 ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( fBas ‘ dom  𝐹 )  =  ( fBas ‘ 𝑌 ) ) | 
						
							| 14 | 13 | mpteq1d | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋  →  ( 𝑏  ∈  ( fBas ‘ dom  𝐹 )  ↦  ( 𝑋 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) ) ) )  =  ( 𝑏  ∈  ( fBas ‘ 𝑌 )  ↦  ( 𝑋 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) ) ) ) ) | 
						
							| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝑏  ∈  ( fBas ‘ dom  𝐹 )  ↦  ( 𝑋 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) ) ) )  =  ( 𝑏  ∈  ( fBas ‘ 𝑌 )  ↦  ( 𝑋 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) ) ) ) ) | 
						
							| 16 | 11 15 | sylan9eqr | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ( 𝑥  =  𝑋  ∧  𝑓  =  𝐹 ) )  →  ( 𝑏  ∈  ( fBas ‘ dom  𝑓 )  ↦  ( 𝑥 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝑓  “  𝑦 ) ) ) )  =  ( 𝑏  ∈  ( fBas ‘ 𝑌 )  ↦  ( 𝑋 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) ) ) ) ) | 
						
							| 17 |  | elex | ⊢ ( 𝑋  ∈  𝐴  →  𝑋  ∈  V ) | 
						
							| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  𝑋  ∈  V ) | 
						
							| 19 |  | simp3 | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  𝐹 : 𝑌 ⟶ 𝑋 ) | 
						
							| 20 |  | elfvdm | ⊢ ( 𝐵  ∈  ( fBas ‘ 𝑌 )  →  𝑌  ∈  dom  fBas ) | 
						
							| 21 | 20 | 3ad2ant2 | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  𝑌  ∈  dom  fBas ) | 
						
							| 22 | 19 21 | fexd | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  𝐹  ∈  V ) | 
						
							| 23 |  | fvex | ⊢ ( fBas ‘ 𝑌 )  ∈  V | 
						
							| 24 | 23 | mptex | ⊢ ( 𝑏  ∈  ( fBas ‘ 𝑌 )  ↦  ( 𝑋 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) ) ) )  ∈  V | 
						
							| 25 | 24 | a1i | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝑏  ∈  ( fBas ‘ 𝑌 )  ↦  ( 𝑋 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) ) ) )  ∈  V ) | 
						
							| 26 | 2 16 18 22 25 | ovmpod | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( 𝑋  FilMap  𝐹 )  =  ( 𝑏  ∈  ( fBas ‘ 𝑌 )  ↦  ( 𝑋 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) ) ) ) ) | 
						
							| 27 | 26 | fveq1d | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  =  ( ( 𝑏  ∈  ( fBas ‘ 𝑌 )  ↦  ( 𝑋 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) ) ) ) ‘ 𝐵 ) ) | 
						
							| 28 |  | mpteq1 | ⊢ ( 𝑏  =  𝐵  →  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) )  =  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) ) | 
						
							| 29 | 28 | rneqd | ⊢ ( 𝑏  =  𝐵  →  ran  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) )  =  ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( 𝑏  =  𝐵  →  ( 𝑋 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) ) )  =  ( 𝑋 filGen ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) ) ) | 
						
							| 31 |  | eqid | ⊢ ( 𝑏  ∈  ( fBas ‘ 𝑌 )  ↦  ( 𝑋 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) ) ) )  =  ( 𝑏  ∈  ( fBas ‘ 𝑌 )  ↦  ( 𝑋 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) ) ) ) | 
						
							| 32 |  | ovex | ⊢ ( 𝑋 filGen ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) )  ∈  V | 
						
							| 33 | 30 31 32 | fvmpt | ⊢ ( 𝐵  ∈  ( fBas ‘ 𝑌 )  →  ( ( 𝑏  ∈  ( fBas ‘ 𝑌 )  ↦  ( 𝑋 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) ) ) ) ‘ 𝐵 )  =  ( 𝑋 filGen ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) ) ) | 
						
							| 34 | 33 | 3ad2ant2 | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ( 𝑏  ∈  ( fBas ‘ 𝑌 )  ↦  ( 𝑋 filGen ran  ( 𝑦  ∈  𝑏  ↦  ( 𝐹  “  𝑦 ) ) ) ) ‘ 𝐵 )  =  ( 𝑋 filGen ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) ) ) | 
						
							| 35 | 27 34 | eqtrd | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝐵  ∈  ( fBas ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ( ( 𝑋  FilMap  𝐹 ) ‘ 𝐵 )  =  ( 𝑋 filGen ran  ( 𝑦  ∈  𝐵  ↦  ( 𝐹  “  𝑦 ) ) ) ) |