Metamath Proof Explorer


Theorem fnasrn

Description: A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013) (Proof shortened by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis dfmpt.1 𝐵 ∈ V
Assertion fnasrn ( 𝑥𝐴𝐵 ) = ran ( 𝑥𝐴 ↦ ⟨ 𝑥 , 𝐵 ⟩ )

Proof

Step Hyp Ref Expression
1 dfmpt.1 𝐵 ∈ V
2 1 dfmpt ( 𝑥𝐴𝐵 ) = 𝑥𝐴 { ⟨ 𝑥 , 𝐵 ⟩ }
3 eqid ( 𝑥𝐴 ↦ ⟨ 𝑥 , 𝐵 ⟩ ) = ( 𝑥𝐴 ↦ ⟨ 𝑥 , 𝐵 ⟩ )
4 3 rnmpt ran ( 𝑥𝐴 ↦ ⟨ 𝑥 , 𝐵 ⟩ ) = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = ⟨ 𝑥 , 𝐵 ⟩ }
5 velsn ( 𝑦 ∈ { ⟨ 𝑥 , 𝐵 ⟩ } ↔ 𝑦 = ⟨ 𝑥 , 𝐵 ⟩ )
6 5 rexbii ( ∃ 𝑥𝐴 𝑦 ∈ { ⟨ 𝑥 , 𝐵 ⟩ } ↔ ∃ 𝑥𝐴 𝑦 = ⟨ 𝑥 , 𝐵 ⟩ )
7 6 abbii { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 ∈ { ⟨ 𝑥 , 𝐵 ⟩ } } = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = ⟨ 𝑥 , 𝐵 ⟩ }
8 4 7 eqtr4i ran ( 𝑥𝐴 ↦ ⟨ 𝑥 , 𝐵 ⟩ ) = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 ∈ { ⟨ 𝑥 , 𝐵 ⟩ } }
9 df-iun 𝑥𝐴 { ⟨ 𝑥 , 𝐵 ⟩ } = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 ∈ { ⟨ 𝑥 , 𝐵 ⟩ } }
10 8 9 eqtr4i ran ( 𝑥𝐴 ↦ ⟨ 𝑥 , 𝐵 ⟩ ) = 𝑥𝐴 { ⟨ 𝑥 , 𝐵 ⟩ }
11 2 10 eqtr4i ( 𝑥𝐴𝐵 ) = ran ( 𝑥𝐴 ↦ ⟨ 𝑥 , 𝐵 ⟩ )