Metamath Proof Explorer


Theorem fncld

Description: The closed-set generator is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion fncld Clsd Fn Top

Proof

Step Hyp Ref Expression
1 vuniex 𝑗 ∈ V
2 1 pwex 𝒫 𝑗 ∈ V
3 2 rabex { 𝑥 ∈ 𝒫 𝑗 ∣ ( 𝑗𝑥 ) ∈ 𝑗 } ∈ V
4 df-cld Clsd = ( 𝑗 ∈ Top ↦ { 𝑥 ∈ 𝒫 𝑗 ∣ ( 𝑗𝑥 ) ∈ 𝑗 } )
5 3 4 fnmpti Clsd Fn Top