Description: Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fncnvima2 | ⊢ ( 𝐹 Fn 𝐴 → ( ◡ 𝐹 “ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreima | ⊢ ( 𝐹 Fn 𝐴 → ( 𝑥 ∈ ( ◡ 𝐹 “ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) ) | |
2 | 1 | abbi2dv | ⊢ ( 𝐹 Fn 𝐴 → ( ◡ 𝐹 “ 𝐵 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) } ) |
3 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) } | |
4 | 2 3 | eqtr4di | ⊢ ( 𝐹 Fn 𝐴 → ( ◡ 𝐹 “ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 } ) |