Metamath Proof Explorer


Theorem fncnvima2

Description: Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion fncnvima2 ( 𝐹 Fn 𝐴 → ( 𝐹𝐵 ) = { 𝑥𝐴 ∣ ( 𝐹𝑥 ) ∈ 𝐵 } )

Proof

Step Hyp Ref Expression
1 elpreima ( 𝐹 Fn 𝐴 → ( 𝑥 ∈ ( 𝐹𝐵 ) ↔ ( 𝑥𝐴 ∧ ( 𝐹𝑥 ) ∈ 𝐵 ) ) )
2 1 abbi2dv ( 𝐹 Fn 𝐴 → ( 𝐹𝐵 ) = { 𝑥 ∣ ( 𝑥𝐴 ∧ ( 𝐹𝑥 ) ∈ 𝐵 ) } )
3 df-rab { 𝑥𝐴 ∣ ( 𝐹𝑥 ) ∈ 𝐵 } = { 𝑥 ∣ ( 𝑥𝐴 ∧ ( 𝐹𝑥 ) ∈ 𝐵 ) }
4 2 3 eqtr4di ( 𝐹 Fn 𝐴 → ( 𝐹𝐵 ) = { 𝑥𝐴 ∣ ( 𝐹𝑥 ) ∈ 𝐵 } )