Metamath Proof Explorer


Theorem fncpn

Description: The C^n object is a function. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion fncpn ( 𝑆 ⊆ ℂ → ( 𝓑C𝑛𝑆 ) Fn ℕ0 )

Proof

Step Hyp Ref Expression
1 ovex ( ℂ ↑pm 𝑆 ) ∈ V
2 1 rabex { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓cn→ ℂ ) } ∈ V
3 eqid ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓cn→ ℂ ) } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓cn→ ℂ ) } )
4 2 3 fnmpti ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓cn→ ℂ ) } ) Fn ℕ0
5 cpnfval ( 𝑆 ⊆ ℂ → ( 𝓑C𝑛𝑆 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓cn→ ℂ ) } ) )
6 5 fneq1d ( 𝑆 ⊆ ℂ → ( ( 𝓑C𝑛𝑆 ) Fn ℕ0 ↔ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓cn→ ℂ ) } ) Fn ℕ0 ) )
7 4 6 mpbiri ( 𝑆 ⊆ ℂ → ( 𝓑C𝑛𝑆 ) Fn ℕ0 )