Step |
Hyp |
Ref |
Expression |
1 |
|
dffn2 |
⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 : 𝐴 ⟶ V ) |
2 |
|
fssxp |
⊢ ( 𝐹 : 𝐴 ⟶ V → 𝐹 ⊆ ( 𝐴 × V ) ) |
3 |
1 2
|
sylbi |
⊢ ( 𝐹 Fn 𝐴 → 𝐹 ⊆ ( 𝐴 × V ) ) |
4 |
|
ssdif0 |
⊢ ( 𝐹 ⊆ ( 𝐴 × V ) ↔ ( 𝐹 ∖ ( 𝐴 × V ) ) = ∅ ) |
5 |
3 4
|
sylib |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ∖ ( 𝐴 × V ) ) = ∅ ) |
6 |
5
|
uneq2d |
⊢ ( 𝐹 Fn 𝐴 → ( ( 𝐹 ∖ I ) ∪ ( 𝐹 ∖ ( 𝐴 × V ) ) ) = ( ( 𝐹 ∖ I ) ∪ ∅ ) ) |
7 |
|
un0 |
⊢ ( ( 𝐹 ∖ I ) ∪ ∅ ) = ( 𝐹 ∖ I ) |
8 |
6 7
|
eqtr2di |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ∖ I ) = ( ( 𝐹 ∖ I ) ∪ ( 𝐹 ∖ ( 𝐴 × V ) ) ) ) |
9 |
|
df-res |
⊢ ( I ↾ 𝐴 ) = ( I ∩ ( 𝐴 × V ) ) |
10 |
9
|
difeq2i |
⊢ ( 𝐹 ∖ ( I ↾ 𝐴 ) ) = ( 𝐹 ∖ ( I ∩ ( 𝐴 × V ) ) ) |
11 |
|
difindi |
⊢ ( 𝐹 ∖ ( I ∩ ( 𝐴 × V ) ) ) = ( ( 𝐹 ∖ I ) ∪ ( 𝐹 ∖ ( 𝐴 × V ) ) ) |
12 |
10 11
|
eqtri |
⊢ ( 𝐹 ∖ ( I ↾ 𝐴 ) ) = ( ( 𝐹 ∖ I ) ∪ ( 𝐹 ∖ ( 𝐴 × V ) ) ) |
13 |
8 12
|
eqtr4di |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ∖ I ) = ( 𝐹 ∖ ( I ↾ 𝐴 ) ) ) |
14 |
13
|
dmeqd |
⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∖ I ) = dom ( 𝐹 ∖ ( I ↾ 𝐴 ) ) ) |
15 |
|
fnresi |
⊢ ( I ↾ 𝐴 ) Fn 𝐴 |
16 |
|
fndmdif |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( I ↾ 𝐴 ) Fn 𝐴 ) → dom ( 𝐹 ∖ ( I ↾ 𝐴 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } ) |
17 |
15 16
|
mpan2 |
⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∖ ( I ↾ 𝐴 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } ) |
18 |
|
fvresi |
⊢ ( 𝑥 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) |
19 |
18
|
neeq2d |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ≠ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ) ) |
20 |
19
|
rabbiia |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } |
21 |
20
|
a1i |
⊢ ( 𝐹 Fn 𝐴 → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) |
22 |
14 17 21
|
3eqtrd |
⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∖ I ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 } ) |