Step |
Hyp |
Ref |
Expression |
1 |
|
necom |
⊢ ( ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑥 ) ) |
2 |
1
|
rabbii |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑥 ) } |
3 |
|
fndmdif |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → dom ( 𝐹 ∖ 𝐺 ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑥 ) } ) |
4 |
|
fndmdif |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝐹 Fn 𝐴 ) → dom ( 𝐺 ∖ 𝐹 ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑥 ) } ) |
5 |
4
|
ancoms |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → dom ( 𝐺 ∖ 𝐹 ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐺 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑥 ) } ) |
6 |
2 3 5
|
3eqtr4a |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → dom ( 𝐹 ∖ 𝐺 ) = dom ( 𝐺 ∖ 𝐹 ) ) |