| Step | Hyp | Ref | Expression | 
						
							| 1 |  | necom | ⊢ ( ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐺 ‘ 𝑥 )  ↔  ( 𝐺 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 2 | 1 | rabbii | ⊢ { 𝑥  ∈  𝐴  ∣  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐺 ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐴  ∣  ( 𝐺 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑥 ) } | 
						
							| 3 |  | fndmdif | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  dom  ( 𝐹  ∖  𝐺 )  =  { 𝑥  ∈  𝐴  ∣  ( 𝐹 ‘ 𝑥 )  ≠  ( 𝐺 ‘ 𝑥 ) } ) | 
						
							| 4 |  | fndmdif | ⊢ ( ( 𝐺  Fn  𝐴  ∧  𝐹  Fn  𝐴 )  →  dom  ( 𝐺  ∖  𝐹 )  =  { 𝑥  ∈  𝐴  ∣  ( 𝐺 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑥 ) } ) | 
						
							| 5 | 4 | ancoms | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  dom  ( 𝐺  ∖  𝐹 )  =  { 𝑥  ∈  𝐴  ∣  ( 𝐺 ‘ 𝑥 )  ≠  ( 𝐹 ‘ 𝑥 ) } ) | 
						
							| 6 | 2 3 5 | 3eqtr4a | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  dom  ( 𝐹  ∖  𝐺 )  =  dom  ( 𝐺  ∖  𝐹 ) ) |