Metamath Proof Explorer
		
		
		
		Description:  The support of a function with a finite domain is always finite.
       (Contributed by AV, 25-May-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | fndmfisuppfi.f | ⊢ ( 𝜑  →  𝐹  Fn  𝐷 ) | 
					
						|  |  | fndmfisuppfi.d | ⊢ ( 𝜑  →  𝐷  ∈  Fin ) | 
					
						|  |  | fndmfisuppfi.z | ⊢ ( 𝜑  →  𝑍  ∈  𝑉 ) | 
				
					|  | Assertion | fndmfisuppfi | ⊢  ( 𝜑  →  ( 𝐹  supp  𝑍 )  ∈  Fin ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fndmfisuppfi.f | ⊢ ( 𝜑  →  𝐹  Fn  𝐷 ) | 
						
							| 2 |  | fndmfisuppfi.d | ⊢ ( 𝜑  →  𝐷  ∈  Fin ) | 
						
							| 3 |  | fndmfisuppfi.z | ⊢ ( 𝜑  →  𝑍  ∈  𝑉 ) | 
						
							| 4 |  | dffn3 | ⊢ ( 𝐹  Fn  𝐷  ↔  𝐹 : 𝐷 ⟶ ran  𝐹 ) | 
						
							| 5 | 1 4 | sylib | ⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ ran  𝐹 ) | 
						
							| 6 | 5 2 3 | fdmfisuppfi | ⊢ ( 𝜑  →  ( 𝐹  supp  𝑍 )  ∈  Fin ) |