Metamath Proof Explorer


Theorem fnelfp

Description: Property of a fixed point of a function. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion fnelfp ( ( 𝐹 Fn 𝐴𝑋𝐴 ) → ( 𝑋 ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹𝑋 ) = 𝑋 ) )

Proof

Step Hyp Ref Expression
1 fninfp ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∩ I ) = { 𝑥𝐴 ∣ ( 𝐹𝑥 ) = 𝑥 } )
2 1 eleq2d ( 𝐹 Fn 𝐴 → ( 𝑋 ∈ dom ( 𝐹 ∩ I ) ↔ 𝑋 ∈ { 𝑥𝐴 ∣ ( 𝐹𝑥 ) = 𝑥 } ) )
3 fveq2 ( 𝑥 = 𝑋 → ( 𝐹𝑥 ) = ( 𝐹𝑋 ) )
4 id ( 𝑥 = 𝑋𝑥 = 𝑋 )
5 3 4 eqeq12d ( 𝑥 = 𝑋 → ( ( 𝐹𝑥 ) = 𝑥 ↔ ( 𝐹𝑋 ) = 𝑋 ) )
6 5 elrab3 ( 𝑋𝐴 → ( 𝑋 ∈ { 𝑥𝐴 ∣ ( 𝐹𝑥 ) = 𝑥 } ↔ ( 𝐹𝑋 ) = 𝑋 ) )
7 2 6 sylan9bb ( ( 𝐹 Fn 𝐴𝑋𝐴 ) → ( 𝑋 ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹𝑋 ) = 𝑋 ) )